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Introduction

Regression is a technique to mathematically model the linear association be-
tween two or more variables, the predictor (or independent) variable and the re-
sponse (or dependent variable). Linear regression results in a least-squares fit of
the variation in the response variable to the predictor variable. But sometimes,
we have multiple possible predictor variables with a single response variable.
For example, we might also have measured temperature and fertilizer appli-
cation rate in addition to the worminess and apples yield. Multiple linear
regression is a method for adding additional predictor variables in the model.
It is analogous to doing a two- or three-way (or even more factors) ANOVA,
in which one adds additional factors to be considered as predictors. One key
difference between ANOVA and regression is that ANOVA uses categorical
predictors, and regression does not - it uses continuous predictors. Analy-
sis of covariance is like a combination of ANOVA and regressions, it uses both
categorical and continuous variables as predictors. Both ANOVA and regres-
sion typically use continuous response variables (but not always - we will get
to logistic regression later). In addition, however, multiple regression is often
done using non-experimental designs, that is, data collected are often based on
observational procedures, allowing the predictor and response variables to vary
naturally, and not under experimental (manipulated) procedures. The linear
regression approach to do ANOVA is called General Linear Models, with fac-
tors specified as ”dummy” variables. For now, we will focus on regression and
multiple regression.

Regression’s Pitfalls

”Regression analysis is widely used, and unfortunately, it is frequently misused”
This is a quote from Montgomery et.al. (2012) [3]. They make a good point -
regression can be mis-used, mis-applied, and give the an investigator a wrong
impression - just like any statistical procedure. Here are some things to be aware
of in Regression and Multiple Regression:

• Extrapolation beyond range of data
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• Outliers and Influential Points

• Predictors not evenly distributed - clustering of X’s

• Non-linearity of data (do you need transformations?)

• Data are non-normal (use non-parametric regression) -[2]

• Small sample size

• Overfitting of the data - too many predictors (multiple regression)

• Autocorrelated predictors (multiple regression)

In the sections below, I will try to illuminate these pitfalls with examples. But
first, let me introduce Multiple Linear Regression.

Multiple Linear Regression

Multiple regression is used when there is a single response variable, but many
possible predictors. The goal is to find the model that best predicts the response
variable (explains the greatest % of variation) with the fewest predictor vari-
ables. Some variables (and combinations of variables) are better predictors than
others. So, we need to find a way of determining which possible combination of
variables is the best set of predictors.

Basics of Multiple Regression

• Similar to basic linear regression, with more β’s (one term for each pre-
dictor x variable)

• You can add as many βs as you want, up to k, the number of predictors
you have available

• Each β gets its own coefficient in the model output, each gets its own line
in the F-table

• Think of each predictor as a factor in an ANOVA (but the df is different.
Why?)

• 1 df used for each predictor

The general multiple regression model:

y = β0 + β1x1 + β2x2 + β3x3 + ...βkxk + ε
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0.0.1 Hypotheses and Assumptions

Remember the words ”Never assume - you make an Ass of U and Me”. We make
assumptions when using any model or statistical procedure, so we always run
the risk of making silly statements. Try not to do that by knowing what you
are assuming.

• Ha is still that each β 6= 0, null H0 is β = 0

• Assume that predictors are independent (no multi-collinearity, uncor-
related)

• Assume that effects of predictors are additive

• Assume that there is a normal distribution of errors underlying the obser-
vations

• Assume linear relationship between each x and y, this can be tested (plot
it, use correlation, use linear regression)

• Assume Equality of variances across x range

• If you violate any of these, transformations may be needed (log or others)

0.0.2 Multiple Regression Example in R

We will use the NC Division of Marine Fisheries (NCDMF) brown shrimp Far-
fante penaeus catch data, obtained from NCDMF Program 120, and NOAA
weather data (Cape Hatteras Station[1]). Program 120 data are Collected with
trawls at 72 stations in Pamlico Sound and Core Sound. These stations have
been sampled with trawls replicated in May and June of each year from 1978-
2004 (1 trawl pulled per station, 75m length). The dependent variable is average
catch in May and June at each station (number of shrimp/trawl) over 27 years.
Catches and other data obtained in each year are the observations, so there
are 27 data records in this analysis, one per year. The independent variables
we may use as predictors are: May mean air temperature at Cape Hatteras (°F
used by NOAA Weather), May dew point at Cape Hatteras, May heating degree
days at Cape Hatteras1, May precipitation at Cape Hatteras, bottom salinity
at time of collection, water bottom temperature (°C used by NCDMF) at time
of collection. Of course, we could include even more predictors (June weather
and climate data, weather data from other stations, fisher harvest rates in the
previous year, and predator abundances at each shrimp life stage), but these
data are harder to come by and integrate. First ask: ”What is the correlation
among the predictor variables?”

1Monthly heating degree days (HTDD) in May of each year. HTDD are defined as the sum
of the differences in ambient temperature from 65 °F for a given period of time. 65 °F was
chosen by NOAA as a base temperature at which buildings and homes are commonly main-
tained. For example, temperatures of 64, 65, 60, 58, 57,63, and 64 °F would have differences
of 1,0,5,7,8,2,1. A sum of these = 24 HTDD for that week.
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> load("C:/Users/luczkovichj/Dropbox/CRM7008/Lecture5/shrimp2.Rdata")

> cor1<-cor(as.matrix(shrimp2[1:27,73:81]))

> write.csv(cor1,file="cor1.csv")

> #this writes a csv file with the output in the local directory

> cor1

average Maxtemp Mintemp Meantemp Dewpoint HTDD

average 1.0000000 0.4043793 0.41252773 0.4599688 0.4646784 -0.46922628

Maxtemp 0.4043793 1.0000000 0.56930319 0.8885641 0.9097669 -0.70898887

Mintemp 0.4125277 0.5693032 1.00000000 0.8828876 0.8510661 -0.77812805

Meantemp 0.4599688 0.8885641 0.88288757 1.0000000 0.9944996 -0.84102417

Dewpoint 0.4646784 0.9097669 0.85106608 0.9944996 1.0000000 -0.83892557

HTDD -0.4692263 -0.7089889 -0.77812805 -0.8410242 -0.8389256 1.00000000

Precip_in -0.1678119 -0.5272537 -0.09795523 -0.3572977 -0.3910884 0.26893994

h2otemp 0.4013902 0.6080413 0.58842782 0.6727228 0.6652060 -0.48568510

h2osalin 0.5434998 0.2551023 0.03548443 0.1610938 0.1696446 0.03181778

Precip_in h2otemp h2osalin

average -0.16781194 0.4013902 0.54349982

Maxtemp -0.52725367 0.6080413 0.25510235

Mintemp -0.09795523 0.5884278 0.03548443

Meantemp -0.35729768 0.6727228 0.16109377

Dewpoint -0.39108841 0.6652060 0.16964460

HTDD 0.26893994 -0.4856851 0.03181778

Precip_in 1.00000000 -0.2206994 -0.37416193

h2otemp -0.22069936 1.0000000 0.41060420

h2osalin -0.37416193 0.4106042 1.00000000

> pairs(shrimp2[1:27,73:81])

The output is a matrix of Pearson correlations for each variable versus the
others. Do you see any highly correlated variables? If so, they are something
to consider for multi-collinearity in our model (we will deal with this later).
Another way to examine the data from this is to make a scatterplot matrix,
with multiple plots of each variable versus the other. Use the pairs() command
to do this.
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This scatterplot matrix can be easily scanned for highly correlated variables.
We will want to come back here and look at this plot some more, but we can
see that Meantemp and dewpoint are very highly correlated (r = 0.99). Why?
Now let’s do the multiple regression model, using the linear model function
lm():

> shrimp2<-data.frame(shrimp2)

> attach(shrimp2)

> fit.shrimp<-lm(shrimp2$average~shrimp2$Meantemp+shrimp2$Dewpoint

+ +shrimp2$HTDD+shrimp2$Precip_in+shrimp2$h2otemp+shrimp2$h2osalin)

> summary(fit.shrimp)

Call:

lm(formula = shrimp2$average ~ shrimp2$Meantemp + shrimp2$Dewpoint +

shrimp2$HTDD + shrimp2$Precip_in + shrimp2$h2otemp + shrimp2$h2osalin)

Residuals:

Min 1Q Median 3Q Max

-17.548 -10.376 -1.890 7.823 26.207

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 528.1059 965.3394 0.547 0.590385

shrimp2$Meantemp -6.8963 14.5333 -0.475 0.640271

shrimp2$Dewpoint 7.2862 14.9662 0.487 0.631659

shrimp2$HTDD -0.6768 0.3101 -2.182 0.041175 *

shrimp2$Precip_in 1.9453 1.3153 1.479 0.154727

shrimp2$h2otemp -2.3889 3.7813 -0.632 0.534685

shrimp2$h2osalin 3.8467 0.9745 3.948 0.000795 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 14.26 on 20 degrees of freedom

Multiple R-squared: 0.5866, Adjusted R-squared: 0.4626

F-statistic: 4.73 on 6 and 20 DF, p-value: 0.00376

Let us interpret this output. First, after a listing of the model, a list of the
residuals summary statistics is printed, giving the minimum, first quartile, me-
dian, 3rd quartile, and maximum of the residuals. The Min and Max are the
largest and smallest residual values that are from the fitted line. More on this
later. Next is what is analogous to an F-table, called ”Coefficients”. Each line
of the table has a β term from the model, with its associated Estimate (β coef-
ficient), standard error of the estimate, t-value, and p-value of getting a lower
or higher t. The statistically significant predictors are given *’s to show which
are largest in t-values. Here we see that HTDD and h2osalin are significant,
salinity much more so than heating degree days. Recall that HTDD is highly
negatively correlated with air temperature, so HTDD may be just a surrogate
for temperature. At the bottom of the output, notice the global measures of
this model’s fit, the multiple R2 and adjusted R2, the overall F-statistic, df,
and p-value for the model. These provide an estimate of the goodness of fit of
the multiple regression model. Adjusted R2 is a way of comparing models with
different numbers of predictors. It is adjusted to account for the number of vari-
ables used. Additional predictor variables will always explain more variation,
so Multiple R2 will always increase, but sometimes not by much. Adjusted R2

should be used to compare after adding or dropping a variable, sometimes it
will go down if you add a variable, or go up if you get rid of a variable.

Here is the regression equation for this model, predicting average shrimp
catch, y :

y = 528.106 + (−6.896)(meantemp) + (7.2862)(Dewpoint)

+(0.6768)(HTDD) + (1.9453)(Precip.in) + (−2.3889)(h2otemp)

+(3.8467)(h2osalin)

The output of a lm() command is called a model output object (called
fit.shrimp here). It stores a lot of the information in a R-object that can be
re-used, plotted or summarized. The name of the variables in the object (such
as beta coefficients, residuals, fitted values) that can be re-used in plots and
further analyses are given by a names() command:

> names(fit.shrimp)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

> attach(fit.shrimp)

> plot(fit.shrimp)
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Here we just plotted the model output object with plot(fit.shrimp), and it
gave us pre-programmed diagnostic plots. The first plot you will see is printed
above is called a residual plot, with the fitted or predicted y values (so-
called ŷ) on the horizontal axis and the residuals (ei) on the vertical axis.
There should be no observable pattern in your residual plot (it should look like
a shotgun blast). There is a dashed line that is horizontal at ei = 0. That line is
the multiple regression line with all six predictors. The points are the fitted or
model predictions of y values, here the shrimp catch. Any points not falling on
this imaginary horizontal line are positive and negative residuals and are thus
shrimp catches that are not well explained by this model. It plots the residuals
(points falling off of the multiple regression line) versus the fitted values or pre-
dicted y values, ŷ shows that there are some extreme values, records 3, 8 and
22 have large residuals. These correspond to years 1980, 1985, and 1999. Some
thing happened in those years to make the model a bad predictor of shrimp
catch. This is a default plot for a regression model, and useful in determining
model adequacy. Better fitting models will have small residuals, close to the
0 line, with some random variation around the line. The red curve in the plot
is a fit of a line to the residuals. It should be horizontal and un-curved, approx-
imating the residual = 0 line. It may show a slope (high or low residuals at
high ŷ) or could be funnel-shaped, increasing in variability as ŷ increases, ”U”
or parabola-shaped (high residuals at low and high ŷ’s, with negative residuals
at intermediate ŷ’s). If you keep hitting return, while doing this interactively,
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you will get Normal QQ plots, Scale-location plots, and residuals vs. leverage
plots (see explanations below). Type help(plot.lm) to read about these plots.

Let’s run this regression again on just h2osalin, a single predictor variable
(simple linear regression). How will the results differ?

> fit.shrimp2<-lm(average~h2osalin)

> summary(fit.shrimp2)

Call:

lm(formula = average ~ h2osalin)

Residuals:

Min 1Q Median 3Q Max

-24.646 -12.424 -1.734 10.834 40.848

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7240 13.2773 0.055 0.95695

h2osalin 2.9488 0.9108 3.237 0.00339 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.66 on 25 degrees of freedom

Multiple R-squared: 0.2954, Adjusted R-squared: 0.2672

F-statistic: 10.48 on 1 and 25 DF, p-value: 0.00339

The adjusted R2 value went down! This is because we have eliminated other
explanatory variables, each of which explains some of the variation. But the
predictor variable h2osalin is still significant, as it was before with all six pre-
dictors. Note that the t-value is lower and p-value is higher with just one (albeit
important) explanatory variable. Adding more variables back to the model will
improve this. But which predcitors one should we add? More on this later.

Let’s run the residual plot again on this simple single-predictor model, this
time getting all the possible plots in the plot.lm arsenal:

> plot(fit.shrimp2, which = c(1:5))
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You will see only the first one on this printed page, but if you try it on your
own, you will see five plots. They are:

• residuals versus fitted plot

• Normal QQ plot

• Scale-location plot -
√
ei versus fitted values ŷ this is similar to the first

plot, but the square root of the residuals is plotted

• Cook’s distance for each observation - another kind of residual, measuring
influence of an observation, which shows the impact on the least squares
fit of the β’s after deleting that observation from the model. The bigger
the Cook’s distance, the bigger the influence of that observation on each
β

• standardized residuals (normalized with mean ei = 0, sd = 1) versus lever-
age - leverage is another measure of influence of each point when it is
deleted.

Each one of these diagnostic plots are useful for looking at the overall fit, de-
tecting outliers and influential points. We will come back to use these plots as
we try different models, in order to assess their adequacy.
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Model Adequacy Measures

But how do we know if the model we have created is any good? How can we
assess the model’s adequacy? Can we explain as much variation with fewer
predictors? If so, we have less to measure to make good predictions. We could
remove each predictor variable one at a time. We could only include predictors
with significant t-values in the full model. Or we could add predictors one by
one see where non-significant ones appear. There are automated methods to do
this (stepwise regression). We will try these methods next.

Some common methods to assess model adequacy include:

• Examination of R2

• Examination of Residuals

• Examination of Outliers and Influential Points

• Examination of Akaike’s Information Criterion (AIC)

We will explore these in the next section...
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