Multivariate Analysis - MANOVA

Joseph J. Luczkovich

February 25, 2014

Introduction

Sometimes, when we have multiple variables measured on a coastal system, we wish to know how they inter-relate. For example, we may have predictors like temperature, salinity, nitrogen concentration, turbidity, runoff, precipitation, winds, currents, wave energy, sediment type, dissolved oxygen measured in multiple locations. We may also have measurements of plankton, seagrass, fishes collected at each of multiple life stages (larvae, juvenile, adult), and humans fishing success or catch rates in the same locations. We may want to know if a management plan to reduce nutrient inputs (N) has an effect on plankton, seagrass, fishes, and catch rates. How do the physical factors relate to the biological measurements and human use of the coastal locations? Is there a correlation between these variables, and can one or more physical factors predict the biological and human responses? The individual physical variables may be correlated with one another, exhibiting multi-collinearity. In addition, the response variables (adult fish abundance and fisher catch rates) may be correlated as well. Fortunately, we can deal with this issue of inter-variable correlation by creating new variables that are **linear combinations** of the original variables. These new combined variables are created using the familiar least squares methods, and the variation they explain in a response variable or variables is greater, without a multi-collinearity problem. This area of data analysis is known as **multi**variate data analysis. We have already been introduced to multi-factorial ANOVA (two-factor or more), and multiple regression analysis. These are simple kinds of multivariate analyses, but let's look at a situation like the example given here where there are multiple continuous response variables.

MANOVA

When multiple variables are used as response and predictor variables, we can use a new set of procedures that fall under the banner of multivariate analysis. In this section, I will introduce the concept of **multivariate analysis of variance or MANOVA**. MANOVA is an extension of the concepts developed in ANOVA, with multiple means compared across factors, but for multiple response variables, rather than a single response variable. So ANOVA looks at the differences among group means (sum of squares between groups) relative to the differences among observations (sum of squares within groups), MANOVA looks at the differences among **vectors** of multiple response variables between and within groups. The math involves using matrices of group means for each variable and their coefficients that are weighted in such a way as to reduce multi-collinearity in the response variables. We will get a multivariate F-test, called the Wilks' Lambda λ as a result of a MANOVA. It tests the significance of the hypothesis that all multivariate vectors are equal. We can look at the univariate F-tests as well, to see which ones are most responsible for the multivariate effects.

Why not use multiple univariate ANOVAs alone? First, there may be significant effects not detected in the univariate tests that reveal themselves when multiple responses are measured. Second, there are type I errors (rejecting the null hypothesis when you should not reject, when the means do not differ) that are inflated when doing the multiple univariate F-tests - if you do enough of them, you will be wrong 5 percent of the time. Finally, it makes sense to measure multiple response variables when you are doing such a large-scale experiment and you are trying to maximize the chance of detecting a difference among groups. What if you choose the wrong response variable, and the difference would have been observed in another variable you did not measure? If you can measure all possible responses of the experimental units, you are better off. In the *Juncus* dredge spoil study, we also measured other plants (*Spartina*) and animal responses (invertebrates and fishes). A MANOVA is the appropriate way to measure the joint responses of the various species involved.

0.1 The Assumptions and Math of MANOVA

The assumptions of MANOVA are similar to ANOVA:

- The variables are multivariate normally distributed (transform if not, look for outliers)
- The variables are linearly related to one another this allows for the construction of the linear combinations
- The variance is homogeneous across groups (if there is heteroscedacitity of variances across groups, means that you cannot add the sums of squares across groups).
- There is homogeneity of the responses (covariance matrix of the response variables)

For computations and matrix algebra in MANOVA see: http://userwww.sfsu.edu/efc/classes/biol710/manova/MANOVAnewest.pdf

1 MANOVA Example and R Code

Multivariate comparison of universities and colleges admission standards. Say you have the data:

```
> schools <- read.csv("~/CRM7008/Multivariate ANOVA/MANOVA/schools.csv")</pre>
```

> View(schools)

> schools

	School	School_Type	SAT	Acceptance	XStudent	Top10.	X.PhD	Grad.
1	Amherst	LibArts	1315	22	26636	85	81	93
2	Swarthmore	LibArts	1310	24	27487	78	93	88
3	Williams	LibArts	1336	28	23772	86	90	93
4	Bowdoin	LibArts	1300	24	25703	78	95	90
5	Wellesley	LibArts	1250	49	27879	76	91	86
6	Pomona	LibArts	1320	33	26668	79	98	80
7	Wesleyan	LibArts	1290	35	19948	73	87	91
8	Middlebury	LibArts	1255	25	24718	65	89	92
9	Smith	LibArts	1195	57	25271	65	90	87
10	Davidson	LibArts	1230	36	17721	77	94	89
11	Vassar	LibArts	1287	43	20179	53	90	84
12	Carleton	LibArts	1300	40	19504	75	82	80
13	Claremont	LibArts	1260	36	20377	68	94	74
14	Oberlin	LibArts	1247	54	23591	64	98	77
15	Washington&Lee	LibArts	1234	29	17998	61	89	78
16	Grinnell	LibArts	1244	67	22301	65	79	73
17	Mount Holyoke	LibArts	1200	61	23358	47	83	83
18	Colby	LibArts	1200	46	18872	52	75	84
19	Hamilton	LibArts	1215	38	20722	51	86	85
20	Bates	LibArts	1240	36	17554	58	81	88
21	Haverford	LibArts	1285	35	19418	71	91	87
22	Colgate	LibArts	1258	38	17520	61	78	85
23	Bryn Mawr	LibArts	1255	56	18847	70	81	84
24	Occidental	LibArts	1170	49	20192	54	93	72
25	Barnard	LibArts	1220	53	17653	69	98	80
26	Harvard	Univ	1370	18	46918	90	99	90
27	Stanford	Univ		18	61921	92	96	88
28	Yale	Univ	1350	19	52468	90	97	93
29	Princeton	Univ	1340	17	48123	89	99	93
30	Cal Tech	Univ	1400	31	102262	98	98	75
31	MIT	Univ	1357	30	56766	95	98	86
32	Duke	Univ		25	39504	91	95	91
33	Dartmouth	Univ	1306	25	35804	86	100	95
34	Cornell	Univ		30	37137	85	90	83
35	Columbia	Univ		29	45879	78	93	90
36	Uchicago	Univ	1300	45	38937	74	100	73
37	Brown	Univ	1281	24	24201	80	98	90
38	Upenn	Univ	1280	41	30882	87	99	86
39	Berkeley	Univ		37	23665	95	93	68
40	Johns Hopkins	Univ		48	45460	69	58	86
41	Rice	Univ	1327	24	26730	85	95	88

42	UCLA	Univ 1142	43	26859	96	100	61
43	UVA	Univ 1218	37	19365	77	91	88
44	Georgetown	Univ 1278	24	23115	79	89	89
45	UNC	Univ 1109	32	19684	82	84	73
46	Umichigan	Univ 1195	60	21853	71	93	77
47	CarnegieMellon	Univ 1225	64	33607	52	84	77
48	Northwestern	Univ 1230	47	28851	77	79	82
49	Washington Univ	Univ 1225	54	39883	71	98	76
50	U Rochester	Univ 1155	56	38597	52	96	73

You wish to test the hypothesis that liberal arts colleges are different thn research universities in terms of the response variables: SAT scores, Acceptance Rate, Dollars per Student, Top 10 percent of high school class, Percent of faculty with PhDs, Graduation rate (percent):

```
> Y<-cbind(schools[,3],schools[,4],schools[,5],schools[,6],schools[,7],schools[,8])</pre>
> #This binds the school variables by columns into a new data frame Y
> Y2<-cbind(Y[,1:2],1/Y[,3],asin(sqrt(Y[,4:6]/100)))
> #This binds transformed school variables by columns into a new data frame Y2
> fit.Y<-manova(Y<sup>*</sup>schools[,2])
> fit.Y2<-manova(Y2~schools[,2])</pre>
> summary.manova(fit.Y,test="Wilks")
             Df
                  Wilks approx F num Df den Df
                                                    Pr(>F)
schools[, 2] 1 0.45919
                          8.4405
                                       6
                                             43 4.507e-06 ***
Residuals
             48
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary.manova(fit.Y2,test="Wilks")
             Df Wilks approx F num Df den Df
                                                   Pr(>F)
schools[, 2]
             1 0.3623
                         12.614
                                      6
                                            43 3.743e-08 ***
Residuals
             48
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> #summary specific for manova, test specifies the Wilks' lambda, like F-test
```

Note that the makers of the R manova() package like to use Pillai- Bartlett trace statistic, that is the default. Here I specified Wilks' λ , which is way more commonly used, but perhaps not as good. See: help(manova). The interpretation is that the two types of schools (colleges and universities) are significantly different in their student acceptance, expenditures per student, graduatation rates, and faculty doctoral metrics, taken as a whole. The two types are different in a multivariate sense. Univariate plots and ANOVA can be done to compare the individual metrics to see which one matters. In SYSTAT, these univarite F-tests are reported in the MANOVA output, but not in R. R forces you to make teh decision to to them yourself.