
Introduction to R statistical package

Joseph J. Luczkovich, PhD

January 14, 2015

Abstract

This is a brief introduction to the use of a new, free statistical package
called R. It is down-loadable from the website: http://www.r-project.org/
You will find this software difficult to use at first, because to use it you
must learn to write ”code”, but after a while you will find it far easier to
use than menu-driven software packages like SAS or SYSTAT. R is better,
because R is free. And many statisticians are using it to develop and
enhance statistical tests for their unique problems, which is a good thing,
because you can use their code, too. Here we explore R and use some
simple commands to add numbers, store results in variables, compute
some simple probabilities based on coin-flipping simulations, and make
some plots of data.

1 Introduction to R

R is a statistical package [1] that has been developed for free non-commercial
use by students, professors, scientists and statisticians all over the world. Be-
cause it is free, it is extremely valuable to people who have little or no money
for software licenses and subscriptions, like most students. Because it is written
by some of the best statisticians out there, it is very robust and full of excel-
lent procedures. But R has a rather steep learning curve. Fortunately, there
are ample R resources and help files, vignettes, help blogs, and even a journal
devoted to the use of R. It is like Wikipedia in that sense, because it has all
the information as a regular paid-for-subscription encyclopedia, but is totally
FREE. And it runs equally well on Linux, Apple Macintosh and Microsoft Win-
dows personal computers. For these reasons, I have adopted R as the primary
software for this course in Data Analysis.

Getting Started First, you need to download and install the latest R package
(3.1.2) for your system (Mac, Windows PC, Linux, there are versions for all):

1. go to http://www.r-project.org/ and find a mirror site (any one is OK)

2. download R 3.1.2 and install in the default directory (R)

1

Figure 1: The R desktop console on a Windows 64-bit system

3. You can choose 32-bit or 64-bit (depends on the computer processor and
operating system you have installed)

4. When finished, open R by clicking on the icon on the desktop

You should see something like this (Figure 1). The main window is called the
console, and it is where you type the codes you will use. The desktop is where
other windows will open, when results of the commands are presented (plots) or
you want to see the command history. At the top of the R desktop, you will see
a menu listing with ”File”, ”Edit”, ”View”, ”Misc.”, ”Packages”, ”Windows”,
”Help” are listed. You can click on each of these drop-down menus and see what
the sub- menus are (more later). In the next row are some icons showing some
common tasks - Open Script, Load Workspace, Save Workspace, Copy, Paste,
Copy and Paste, and Print. In the console, at the bottom you will see a ”>”.
That is the prompt. You will type commands after that.

2 Basic Calculations

R is basically a calculator, upon which all statistical calculations can be com-
puted. There are many built in commands, which we will learn gradually. You
can see that it is able to do computations with simple math, and with complex
math. Try to run this simple command: type 2+2 after the command prompt,
then hit enter. You should see the answer to this simple problem. [1] 4. The
answer is 4, as expected, but what is the [1]? That number inside the [] is the
row index for the answer. Some answers have many rows. Let’s try something
more complicated. Type rnorm(100) after the command prompt and then hit

2

Figure 2: The result of 2+2 and rnorm(100)

enter. That command will return a long list of numbers, 100 numbers to be
exact (Figure 2). They are values drawn at random from a normal distribu-
tion. Try doing this yourself. Let’s assign the result of our commands to a
variable,which is easy to do, after you learn the R notation. the notation < −
means ”assign” or ”equal to”. Type: x < −2 + 2 and hit enter, what do you
see? Not the answer 4 as before, but nothing happened, just a new command
prompt was returned. But something did happen, internally in R. The result
of the command on the right of the < − was stored in the new variable you
created, x. Now, type x and hit enter. You see the answer is stored in x, x = 4,
displayed just as before [1] 4. What do you think will happen if you type y =
rnorm(100)? Try it and see.

3 Vectors and entering data

R can store many numbers in a single variable. Such a variable is termed a vector
in R, because it is a single line or row of data, even if the rows wrap around
when displayed on the screen. Vectors can be added together, subtracted from
one another, and multiplied or divided by a scalar, resulting in another vector.
R can represent matrices as well, where there are numbers arranged in both
rows and columns. For now, we will work with vectors. To enter some numbers
as a vector, use the command c(x,y,z,...) to create a vector. The ”c” means
”concatenate”. Try entering v1 < −c(1, 2, 3, 4, 5) and v2 < −c(5, 4, 3, 2, 1).
Then add the two vectors v1+v2. What is the result? What is the result of
v1-v2? v1*v2? Of 2 * v1? Try these on your R workstation. Answers are given

3

Figure 3: The plot of the two vectors v1 and v2

below. 1.
There are many better ways to enter data in R as vectors, matrices, or data

frames, which we will see later. Data can be imported in to R from text files
(as comma separated values, or csv), many stand-alone stat packages (SYSTAT
and SAS among others). That is mainly how you will enter data in this course,
but this simple method of creating a vector is useful sometimes.

4 Plotting

It is easy to make a plot of two vectors of equal length in R. The command to
create a plot is plot(x,y). Let’s make a plot of the two vectors we just created
(Figure 3)

5 Probability and coin flipping

Let’s flip some coins in R to learn about probabilities. The definition of proba-
bility is the number of successes/number of attempts of any process. If we flip a
coin 10 times, and it comes up heads 5 times, we say the probability of getting
a head is 0.5 or 5 heads/10 flips. But that does not always happen. Sometimes
there are 6,7,8,9 and even 10 heads in 10 flips. What is the probability in these
cases? It is still p = 0.5, in reality, if the coin is not weighted so that heads
will come up (a fair coin). These unusual results for number of heads are due
to random chance events, and our estimate of the probability is off because 10

1a) v1+v2 = 6,6,6,6,6 v1-v2=-4,-2,0,2,4 v1*v2=5,8,9,8,5 2*v1=2,6,8,10

4

Figure 4: Coin flips of 10, 100, and 1000 replicates

flips is too few to see the true (long-term) probability of the flipping process.
We know, even with 10 heads in a row, that intuitively the p 6= 1.0. We could
flip the coin 100, 1000, 10,000 times or more, count the heads, and get a better
idea of the true probability. That would be time consuming in practice, but we
can simulate a fair coin in R and see what the true probability is. The com-
mands to do 10, 100, and 1000 coin flips are shown in Figure 4. The command
is rbinom(10,1,0.5). This tells R to flip a coin (rbinom is a random binomial
function in R) ten times using the parameter or argument: (10,1,0.5) 10 for ten
replicates, 1 for the specific binomial distribution called Bernouli, and for the
coins bias, in this case 0.5. Now you could count the heads (1’s in tis case) by
hand, but why not let R do it? Here’s how: Assign the result in each case to a
variable, and use the built-in command sum(variable) to compute the number
of heads in each variable. Let’s do that next (Figure 5). Notice that I called the
variable a unique name to keep the results for the coin flips separate, so 10 flips
was assigned to variable cf10 (coin flip 10), 100 flips assigned to cf100 and 1000
coin flips to cf1000. I did 10,000 flips here as well, calling the result cf10000.
Variables can be named any way you please, as long as they don’t start with
a period (.) or a number. They should also not be the same as an existing R
built-in commands (avoid ”mean” and ”SD”, among others). To get the num-
ber of heads, we simply use the built-in command sum() to add up the heads.
There are 2/10, 51/100, 511/1000, and 5011/10000 heads in this example. You
will get different numbers each time you run the command, that is because it is
random selection from a binomial distribution. What values do you get? What
happened as the number of coin flips increased? Did the estimate of the prob-
ability of getting a head get closer to the true probability? Make a plot of the
probability of getting a head (p on y-axis) in 10, 100, 1000, and 10,000 coin flips

5

Figure 5: The number of heads resulting from 10, 100, 1000, 10000 coin flips

(on x-axis). Where does the p converge on the ”true” probability?

6 Homework 1

For Homework 1, turn in the following as a pdf document. 1) Plot the data
from 10,000 points drawn from a normal distribution. Typically, the normal
distribution will have an average (mean) of 0.0 with equal numbers of positive
and negative points, varying between -4 and +4. Plot the frequency (probabil-
ity) of getting each point of this distribution along the y-axis, and the points
ranging from -4.0 through +4.0 on the x axis. Hint: You may wish to try this
with fewer random points (try 50) to figure out the probabilities, and group
the points into frequency bins, like -1.5 to -1.0, -1.0 to -0.5, -0.5 to - 0.0, 0.0
to 0.5, 0.5 to 1.0, 1.0 to 1.5 etc., computing the ”successes” for teh number of
random points falling within each frequency bin in 50 trials. Hint 2: There is a
very easy built-in way to do this in R with a single command. 2) Create an x,y
plot for the coin flip experiment (10 flips through 10,000 flips) as just described
above. 3) Then devise a procedure for testing whether or not a new coin is
”fair” with the data given below: 10 flips has 8 heads 100 flips has 76 heads
1000 flips has 795 heads 10000 flips has 8035 heads If it is a ”fair” coin what
would the expected probability be? Is the asymptotic probability for this trail
with a new unknown coin the same as that of a ”fair” coin? How can we test
this difference statistically? Hint, try using the binomial distribution with the
long-term probability suspected for this coin, then look at any statistical test
that you are familiar with to assess the significance of the difference.

6

References

[1] R Core Team , R: A Language and Environment for Statistical Comput-
ing , R Foundation for Statistical Computing , Vienna, Austria, 2014,
http://www.R-project.org/

7

