Multivariate Analysis - Cluster Analysis

Joseph J. Luczkovich

February 27, 2014

Introduction

There are times when we don't really know anything about our variables. That is we have collected many observations and cases, and measured lots of things, but we don't know which variables are predictors of another variable. There may not be a theory we can use to predict one variable from another, or perhaps there is not relationship of any kind. But we wish to explore the data to discover relationships that might exist. We can explore the data to discover natural groupings of multivariate data, to perhaps combine the variables in some way that makes sense. This is an example of Exploratory Data Analysis (EDA). Plotting variables is one way to explore the data. Using data reduction methods (using inter-dependency methods of multivariate analysis) can be a useful way to explore complex data with many variables and explanatory factors.

Clustering

In this chapter, we will learn to use clustering strategies, which are widely used in social and natural sciences. The goal in clustering is to discover natural groups of cases (fishes, people, stations), in a hierarchy of relations, based on multiple variables. For instance, in taxonomy, biologists are interested in what species (cases) are grouped into Families, Orders, Classes, Kingdoms based on genetic or morphological variables, i.e., how to put the like species together. In marketing, analysts want classify customers (cases) into similar groups based on buying habits, psychology, social and economic classes, gender, etc. This approach is based on the similarity of cases (rows) in terms of the variables (columns). One way to discover natural groupings of data is to use a clustering strategy. This is similar to a method used by most people, even by small children: grouping like object together, so if you have a collection of objects, you can group them by which ones are similar to another and put them in piles of similar colors, shapes, textures, etc. Clustering strategies are simply ways of doing that mathematically using some sort of similarity measure. But first let us examine the measures of similarity we will need to use.

Similarity, Dissimilarity, Distance

First we must make a measure of the similarity of objects. Or dissimilarity. This is already familiar to you: correlation is the similarity of x vs y . If both vary together, they are similar. So the Pearson correlation coefficient r is a similarity measure for two variables. But there are other types of similarity metrics. One is Euclidean Distance. Distance measures are used to compute similarity, but they are the inverse of similarity: when two cases are very different, they have a high euclidean distance. This is defined as the linear distance between points in a multivariate coordinate system. The simplest such system to visualize are 2 D coordinates of x and y axes (two variables) that define two vectors on which the cases were measured (Figure 1). Each x and y measurement will define a point $(x=(1,3), y=(3,1))$, and there are different x and y measurements of each case (only one case as an example is shown in Figure 1). A plot of the x and y in coordinate space will show the points. Euclidean distance is the direct line distance between the points across the coordinate space, using the Pythagorean Theorem to compute this distance (hypotenuse of the right triangle).

$$
(X P)^{2}+(Y P)^{2}=2^{2}+2^{2}=\sqrt{8}
$$

. You can visualize Euclidean distance in up to 3 dimensions. It is difficult to graph in higher dimensions, but it can always be computed, no matter how many dimensions (variables) you have. The distances are computed in higher dimensional vector space. Use your powerful mind (abstraction) here to understand how this might be done in n-dimensional vector space.

Distance is computed in many ways. Here are some methods using the dist() command in R :

- euclidean, usual square distance between the two vectors.
- maximum, maximum distance between two components.
- Manhattan, absolute distance between the two vectors, like using a taxicab on a city grid.
- Canberra, a weighted Manhattan measure of distances.
- binary the vectors are regarded as binary bits.
- Malinowski, generalization of both the Euclidean distance and the Manhattan distance.

Let's load some data to create a similarity matrix using Euclidean distance. We will use some fish stomach content analysis data from Core Sound, NC. In this file, rows are fish individuals collected inside and outside of the no trawling zones of Core Sound. The columns record the identity number of the individual fish (fish.ID, in this case, the species is pinfish), which are the cases, where they were collected (Open or Closed trawling zone, and each column after that reports the proportion of the mass in each stomach attributed to different prey

Figure I.3-3. Illustration of Euclidean distance. For $\triangle X Y P$, we have $(X P)^{2}+(Y P)^{2}=(X Y$ or $2^{2}+2^{2}=(X Y)^{2}$, so $\|X Y\|=\sqrt{8}$.

Figure 1: The euclidean distance visualized in two dimensions, x, y. These are two measurements, or variables, taken across multiple cases. Here just a single case measurements $\mathrm{x}=(1,3), \mathrm{y}=(3,1)$ is shown. P is a point at right angles to the x, y. The variables form a 2D vector space. From [1]
types consumed by the fish. Actually, we will make a dissimilarity (rather than similarity) matrix using the $\operatorname{dist}()$ command, which will operate only on the columns with continuous measurements of our prey items in pinfish diet data:

> pinfish_diet<-read.csv("~/CRM7008/Clustering/Pinfish_diet.csv")							
> pinfish_diet							
	Fish.number	Area	Plankton	Plant	Epifauna	Infauna	Fouling
1	CLOSED Closed	0.6258179	96.836161	1.549007230	0.55999317	0.000000	
2	CLOSED2 Closed	0.0000000	99.430834	0.003932112	0.30093033	0.000000	
3	CLOSED3	Closed	0.2004361	92.617130	0.851531255	0.52598368	0.000000
4	CLOSED4	Closed	0.0000000	80.444874	9.110825290	0.00000000	0.000000
5	CLOSED7	Closed	0.0000000	46.521205	0.407168489	0.00000000	0.000000
6	CLOSED8	Closed	15.2400962	81.971564	0.000000000	2.73428175	0.000000
7	CLOSED9	Closed	0.3101242	50.925040	0.725567128	7.21379967	0.000000
8	CLOSED10	Closed	0.0000000	99.801633	2.368230914	0.02920775	0.000000
9	CLOSED11	Closed	0.0000000	92.143465	1.046490235	0.96130017	0.000000
10	CLOSED12	Closed	0.0000000	27.158980	1.163215291	0.30078257	0.000000
11	CLOSED13	Closed	0.0000000	49.230652	1.656090993	1.91265888	0.000000
12	OPEN1	Open	0.0000000	90.395816	9.364389841	0.21234308	0.000000
13	OPEN5	Open	11.0626751	12.249153	65.022380380	7.37859119	2.666142
14	OPEN6	Open	0.0000000	50.722702	18.254838800	19.49602083	16.196510
15	OPEN7	Open	1.6407267	12.531904	5.440881254	80.14602110	0.000000
16	OPEN8	Open	0.4651242	30.282063	0.000000000	4.48772342	6.696965

17	OPEN9	Open	1.3036137	51.604957	10.715423670	32.87126052	0.000000
18	OPEN10	Open	0.0000000	13.216017	0.928382240	62.69442508	7.570645
19	OPEN11	Open	0.4194916	19.561325	0.447708271	25.71700725	42.673005
20	OPEN12	Open	0.0000000	98.025418	0.693246953	0.41623789	1.062957
21	OPEN13	Open	1.2997738	2.338562	3.956611394	1.66878320	2.624613
22	OPEN14	Open	0.0869813	22.348482	14.653372200	2.46342587	42.581546
23	OPEN15	Open	0.0000000	35.446637	0.524122614	3.93167556	54.101267
24	OPEN16	Open	0.1466321	48.561367	0.729186303	42.91372835	0.000000
	POM						
1	0.00000000						
2	0.11383878						
3	0.00000000						
4	10.07640173						
5	51.68915922						
6	0.00000000						
7	40.05571447						
8	0.16915935						
9	3.57907386						
10	70.79541494						
11	39.82116557						
12	0.02745106						
13	1.62105789						
14	3.42818334						
15	0.00000000						
16	0.47804048						
17	2.67615400						
18	3.21637062						
19	11.38538246						
20	0.00000000						
21	84.00982780						
22	4.51701742						
23	5.99629839						
24	6.47894783						

Now, using the columns only with the proportions of prey in the diet (columns $3-13$), let's create a distance matrix using the dist() command, and using the default metric of dissimilarity, euclidean distance:

```
> dist.pinf<-dist(pinfish_diet[,2:6])
> dist.pinf
\begin{tabular}{lrrrrrr}
7 & 51.8758360 & 54.7861382 & 47.2094422 & 35.2467771 & 9.4624404 & 38.8487974 \\
8 & 3.5599391 & 2.6928688 & 8.2313746 & 22.9169029 & 59.6096744 & 26.5305917 \\
9 & 5.3416541 & 8.2635315 & 0.7842533 & 15.9222576 & 51.0235661 & 20.6145188 \\
10 & 77.9063318 & 80.8127838 & 73.1860424 & 60.2353870 & 21.6667324 & 63.6784391 \\
11 & 53.2507900 & 56.1848019 & 48.5411788 & 35.9436883 & 3.9621923 & 40.4296542 \\
12 & 11.3507025 & 14.5455133 & 9.8451474 & 11.1316346 & 50.0656868 & 22.2845385 \\
13 & 119.0548838 & 122.4771416 & 115.8763137 & 99.7094826 & 83.1153231 & 106.8184500 \\
14 & 58.7845718 & 61.9881966 & 54.9763665 & 41.0352793 & 29.9225404 & 47.7355599 \\
15 & 129.6983053 & 132.0933143 & 126.3731100 & 117.5357215 & 97.5108169 & 117.4148085 \\
16 & 74.5595422 & 77.4540035 & 69.8404532 & 57.2240197 & 18.8491220 & 60.1371232 \\
17 & 62.9916900 & 65.8082098 & 59.4425000 & 48.9455658 & 38.9602977 & 51.7133223 \\
18 & 116.4785009 & 118.9894820 & 112.7469397 & 103.1822570 & 79.3733122 & 103.4146173 \\
19 & 90.8675620 & 93.7115811 & 86.3998652 & 74.5268120 & 41.6589907 & 76.1831212 \\
20 & 1.7884950 & 1.7548664 & 6.0546317 & 21.7974886 & 57.5862294 & 24.8957998 \\
21 & 105.6957686 & 108.6628581 & 101.0097514 & 87.5473882 & 49.6132384 & 90.5023319 \\
22 & 84.5876181 & 87.7566168 & 80.0932290 & 65.3068394 & 31.4910878 & 70.7046982 \\
23 & 68.7521267 & 71.6539459 & 64.0333056 & 51.4056280 & 13.1395304 & 54.7555684 \\
24 & 71.8087420 & 74.1965357 & 68.3524781 & 60.502672 & 48.0348251 & 60.8170778 \\
& 7 & 8 & 9 & & 10 & \\
2 & & & & & & 11
\end{tabular}
```

5
6
7
8
9
10
11
12
13
14 70.1483410
105.6758425 81.4236535
76.4342936 34.9378769 87.1079171
80.9570899 17.2560714 68.8253306 41.4700849
95.4672698}666.8305660 20.2509520 67.8265092 55.4596413
76.4275065 40.7277847 61.6274442
120.7614497 60.3116341 130.8205416 75.8817837 64.3266190 117.6396106
70.3132643 59.8431713 88.4936466
58.9879027 37.2186744 88.1634485 18.7717806 47.4020750
77.7207544 31.4242204 89.1668237
92.4263062
2
3
4
5
6
7
8
9
10
1 1
12
1 3
14
15
16
1 7
18
1 9
20 92.1749633
21 33.3171867 107.0623781
22 30.6269641 86.0674320 25.4194786
23 30.1480851 70.0757691 37.3285531
24

```

This matrix is a result of the euclidean distance metric applied to each case,
```

> scatterplot3d(Plant,Epifauna,Infauna)

```


Figure 2: The 3D scatter plot of the proportion of plants, epifauna (small benthic critters), infauna (larger benthic worms) in the stomach contents of pinfish from Core Sound, NC.
across the columns of prey, so the similarity (low distance \(=\) high similarity) of the diet of fish 1 is given relative to that of fish \(2,3,4,5\) etc. To illustrate the similarity of the fish for just three of the prey types, I will create a 3D scatter plot (but download \(R\) package scatterplot3d first) with points representing the individual fish stomach contents along an axis devoted to three prey types:
```

> library("scatterplot3d", lib.loc="C:/Users/Joseph/Documents/R/win-library/3.0")
> attach(pinfish_diet)

```

The points in Figure 2 represent the diets of each pinfish. Some fish plot close together in the 3D plot, they have similar diets (based on only these three prey types). The pinfish plotting close to one another will have low euclidean distance, thus high similarity. Imagine a straight line connecting each pair of fish, that is the euclidean distance. The matrix we computed above considered all they prey in the diet, so it is a better estimate of similarity, but it is impossible to visualize with a graph.

\section*{1 Clustering Strategies}

A whole other area to consider in clustering multivariate data, beside which distance metric to use, is to choose an appropriate clustering algorithm, i.e., what is the best clustering strategy? We could start like a child with all her toys laid out separately and start by putting ones together in piles if they have a high similarity (low distance), creating some number of piles. These piles then could be grouped as well in a hierarchy of similarity. This is called an agglomerative clustering strategy. The child could also have one huge pile of toys and start dividing the huge pile into some number of different smaller piles based on similarity. This is called a divisive clustering strategy. Both are hierarchical. There is a type of strategy called k-means clustering. If you know how many large groups or piles you ultimately want, say three groups, you could specify k -means clustering with \(\mathrm{k}=3\). Spam email is often sorted this way (known sender, unknown sender OK, unknown sender SPAM).
The clustering process is iterative. The agglomerative strategy starts with the separate cases and groups them together in larger and larger piles based on the linkage criterion that you specify. Do you group with the closest one in vector space (most similar by distance metric chosen? If the groups get bigger and bigger, which point or group of points is used to judge the similarity to other points and groups (piles)? The average, median or centroid similarity of cases within each group? The nearest group member in vector space for the two groups? Thus, there are many linkage methods to choose from. In R, a number of different clustering methods are provided. Each clustering algorithm uses a different method to link the cases or groups of cases.
- The complete linkage method finds similar clusters based on the farthest away points within each group's points. Default method in R
- The single linkage method finds similar clusters based on the nearest points to the ones in each cluster; it adopts a "friends of friends" clustering strategy. Creates chains of groups.
- Ward's minimum variance method aims at finding compact, spherical clusters.
- Median linkage use the median distance measure with each cluster to join groups.
- Centroid linkage computes coordinates for a central point within each cluster in vector space and uses this centroid to join groups.

The other methods can be regarded as aiming for clusters with characteristics somewhere between the single and complete link methods. Note however, that the methods median and centroid do not lead to monotonic distance measure, and the resulting dendrograms can have so-called inversions (which are hard to interpret). These choices are complicated and will give different cluster dendrograms (chaining in single linkage). You can try experimenting with different
```

> plot(pinfish.clust, labels = pinfish_diet[,1])\#plots dendrogram and labels ends
> rect.hclust(pinfish.clust,h=50)\#this makes a cluster cut-point at height=50

```

Cluster Dendrogram

dist.pinf hclust ( \({ }^{*}\), "complete")
linkage methods; you should feel good if they seem to produce the same clusters over time. If they produce different clusters each time you use a new linkage method, there may be problems with extreme values in the underlying data. The commandhclust() used on a distance matrix object is what will perform a clustering algorithm, using the complete linkage (default). Let's try this on our distance matrix from the pinfish diet data:
```

> pinfish.clust<-hclust(dist.pinf)

```

Then, we can plot the resulting cluster output object as a dendrogram, by using the plot () command. Let's make a cluster dendrogram of the pinfish diet data Height in these dendrograms is equivalent to the euclidean distance. Fish with the most similar diets have low heights at which the linking method joined them. There are many ways to cut a dendrogram, you could also use \(\mathrm{k}=2\) instead of \(\mathrm{h}=50\) in the code to split the clusters into two major clusters, for example. It is often best to leave it to the reader or viewer to do this task, the groups may be obvious. Here it is not so obvious that the pinfish ate different diets in the trawled and non-trawled (closed) areas. There may be one large cluster of fish from the open areas, but two from the closed are also grouped there. We could
try using different distance metrics, or different linkage methods. There are other statistical methods to generate probability values for each branch of the cluster diagram.

\section*{Probability clustering}

There is an algorithm in R that allows you to generate a probability for the cluster groups based on bootstrap methods. The name for "bootstrap" comes from the phrase "to pull oneself up by one's bootstraps" - this is impossible feat. That is what the developers of bootstrap methods have done, created some statistical method that is impossible, or nearly so. It belongs to the general approach of re-sampling statistics - the data themselves from a small sample are used to generate a distribution to test against. The bootstrap approach in pvclust() generates many possible clusters using the hclust() algorithm (but dropping one point in each re-sampling run and then computing the clusters again) and compares the re-sampled distribution of these clusters to the observed clusters to see if the clusters you have discovered are "real". The package is called pvclust (http://www.is.titech.ac.jp/ shimo/prog/pvclust/). It computes p-values giving the uncertainty of the clusters, with \(100 \%\) very certain. The hypothesis is that the clusters are "real" if the p-value is \(>95 \%\), that is, there is a \(5 \%\) error of being wrong and the clusters are false. Two kinds of p-values are produced: approximately unbiased multi-scale bootstrapped probability (AU) and normal bootstrapped probability (BP). The AU is better because it accounts for bias in the bootstrapping approach. There is another function that allows you to discover clusters with very large and small probabilities. When you run it, it may take a long while to compute the final cluster dendrogram. You should see progress message "Bootstrap ( \(\mathrm{r}=0.5\) )... Done" as it re-samples your data and updates the user. Here is an example of pvclust() with pinfish diet data from fish collected inside and outside Core Sound. pvclust likes the columns to be what is clustered, so we will first transpose the diet matrix:
```

> library("pvclust", lib.loc="C:/Users/Joseph/Documents/R/win-library/3.0")
> pinfish.tr<-t(pinfish_diet[,3:8])\#just get the columns with prey, transpose
> pinfish.pvclust<-pvclust(pinfish.tr,method.hclust="complete",

+ method.dist="euclidean")\#run pclust on transposed matrix
Bootstrap (r = 0.5)... Done.
Bootstrap (r = 0.5)... Done.
Bootstrap (r = 0.67)... Done.
Bootstrap (r = 0.67)... Done.
Bootstrap (r = 0.83)... Done.
Bootstrap (r = 1.0)... Done.
Bootstrap (r = 1.0)... Done.
Bootstrap (r = 1.17)... Done.
Bootstrap (r = 1.17)... Done.
Bootstrap (r = 1.33)... Done.

```
```

> plot(pinfish.pvclust)
> pvrect(pinfish.pvclust,alpha=0.95)\#red boxes around clusters exceeding p=95%
>

```

\section*{Cluster dendrogram with AU/BP values (\%)}


Distance: euclidean
Cluster method: complete

Next, we plot the dendrogram: So, we can see that there are some reliable clusters with \(\mathrm{P}=100 \%\). The red boxes show which clusters have a high probability of being "real": they are likely to be true and present in future studies 95 times out of 100 (if the bootstrap probabilities are correct). There seems to be a pattern that the fish from the open trawling areas group together in the large cluster on the right side (fish IDs 14-24), these fish ate a lot of infauna, but little plant material. But there are some exceptions: fish IDs 12 and 20 are not in this open-trawling cluster, they grouped with the closed-area fishes; when you examine their diets in the original data, they ate a lot of plants, so are grouped by the clustering strategy with the closed-area fish, which also ate plants predominantly. Fish IDs \(5,7,11\) were collected in closed trawling areas and are grouped with the open trawling area fish. Furthermore, there are low AU p-values (in red color text) associated with edge numbers for some clusters(the gray letters mark the dendrogram divergences 20,21,22). At edge number 19 and below, the AU p-values are all high, over \(90 \%\). Fishes in the middle two clusters (IDs 10,21 , and IDs 15,18 ) are not reliably grouped with either main trawling-area groups classified here. They are intermediate in the groupings. These results are not surprising, as the fish could easily migrate between the areas, there was no fence separating trawling and non-trawling areas. The areas were adjacent to one another, so we might expect some overlap. Nonetheless, the clustering suggests there might be some trawling effects on pinfish diets. Thus, in conclusion, we have found some natural groupings associated with the trawling in Core Sound that is apparent in the pinfish diet data, and we can do some additional hypothesis testing and experimentation on the ideas that have emerged from the cluster dendrograms.

\section*{References}
[1] William R Dillon and Matthew Goldstein. Multivariate analysis: Methods and applications, volume 45. John Wiley \& Sons New York, 1984.```

