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Introduction

There are times when we don’t really know anything about our variables. That is
we have collected many observations and cases, and measured lots of things, but
we don’t know which variables are predictors of another variable. There may not
be a theory we can use to predict one variable from another, or perhaps there
is not relationship of any kind. But we wish to explore the data to discover
relationships that might exist. We can explore the data to discover natural
groupings of multivariate data, to perhaps combine the variables in some way
that makes sense. This is an example of Exploratory Data Analysis (EDA).
Plotting variables is one way to explore the data. Using data reduction methods
(using inter-dependency methods of multivariate analysis) can be a useful
way to explore complex data with many variables and explanatory factors.

Clustering

In this chapter, we will learn to use clustering strategies, which are widely
used in social and natural sciences. The goal in clustering is to discover natural
groups of cases (fishes, people, stations), in a hierarchy of relations, based on
multiple variables. For instance, in taxonomy, biologists are interested in what
species (cases) are grouped into Families, Orders, Classes, Kingdoms based on
genetic or morphological variables, i.e., how to put the like species together. In
marketing, analysts want classify customers (cases) into similar groups based
on buying habits, psychology, social and economic classes, gender, etc. This
approach is based on the similarity of cases (rows) in terms of the variables
(columns). One way to discover natural groupings of data is to use a cluster-
ing strategy. This is similar to a method used by most people, even by small
children: grouping like object together, so if you have a collection of objects,
you can group them by which ones are similar to another and put them in piles
of similar colors, shapes, textures, etc. Clustering strategies are simply ways of
doing that mathematically using some sort of similarity measure. But first let
us examine the measures of similarity we will need to use.
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Similarity, Dissimilarity, Distance

First we must make a measure of the similarity of objects. Or dissimilarity. This
is already familiar to you: correlation is the similarity of x vs y. If both vary
together, they are similar. So the Pearson correlation coefficient r is a similarity
measure for two variables. But there are other types of similarity metrics. One
is Euclidean Distance. Distance measures are used to compute similarity, but
they are the inverse of similarity: when two cases are very different, they have
a high euclidean distance. This is defined as the linear distance between points
in a multivariate coordinate system. The simplest such system to visualize are
2D coordinates of x and y axes (two variables) that define two vectors on which
the cases were measured (Figure 1). Each x and y measurement will define
a point (x=(1,3), y= (3,1)), and there are different x and y measurements of
each case (only one case as an example is shown in Figure 1). A plot of the
x and y in coordinate space will show the points. Euclidean distance is the
direct line distance between the points across the coordinate space, using the
Pythagorean Theorem to compute this distance (hypotenuse of the right
triangle).

(XP )2 + (Y P )2 = 22 + 22 =
√

8

. You can visualize Euclidean distance in up to 3 dimensions. It is difficult to
graph in higher dimensions, but it can always be computed, no matter how many
dimensions (variables) you have. The distances are computed in higher dimen-
sional vector space. Use your powerful mind (abstraction) here to understand
how this might be done in n-dimensional vector space.

Distance is computed in many ways. Here are some methods using the dist()
command in R:

• euclidean,usual square distance between the two vectors.

• maximum, maximum distance between two components.

• Manhattan, absolute distance between the two vectors, like using a taxicab
on a city grid.

• Canberra, a weighted Manhattan measure of distances.

• binary the vectors are regarded as binary bits.

• Malinowski, generalization of both the Euclidean distance and the Man-
hattan distance.

Let’s load some data to create a similarity matrix using Euclidean distance.
We will use some fish stomach content analysis data from Core Sound, NC. In
this file, rows are fish individuals collected inside and outside of the no trawling
zones of Core Sound. The columns record the identity number of the individual
fish (fish.ID, in this case, the species is pinfish), which are the cases, where
they were collected (Open or Closed trawling zone, and each column after that
reports the proportion of the mass in each stomach attributed to different prey
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Figure 1: The euclidean distance visualized in two dimensions, x, y. These are
two measurements, or variables, taken across multiple cases. Here just a single
case measurements x=(1,3), y=(3,1) is shown. P is a point at right angles to
the x,y. The variables form a 2D vector space. From [1]

types consumed by the fish. Actually, we will make a dissimilarity (rather than
similarity) matrix using the dist() command, which will operate only on the
columns with continuous measurements of our prey items in pinfish diet data:

> pinfish_diet<-read.csv("~/CRM7008/Clustering/Pinfish_diet.csv")

> pinfish_diet

Fish.number Area Plankton Plant Epifauna Infauna Fouling

1 CLOSED Closed 0.6258179 96.836161 1.549007230 0.55999317 0.000000

2 CLOSED2 Closed 0.0000000 99.430834 0.003932112 0.30093033 0.000000

3 CLOSED3 Closed 0.2004361 92.617130 0.851531255 0.52598368 0.000000

4 CLOSED4 Closed 0.0000000 80.444874 9.110825290 0.00000000 0.000000

5 CLOSED7 Closed 0.0000000 46.521205 0.407168489 0.00000000 0.000000

6 CLOSED8 Closed 15.2400962 81.971564 0.000000000 2.73428175 0.000000

7 CLOSED9 Closed 0.3101242 50.925040 0.725567128 7.21379967 0.000000

8 CLOSED10 Closed 0.0000000 99.801633 2.368230914 0.02920775 0.000000

9 CLOSED11 Closed 0.0000000 92.143465 1.046490235 0.96130017 0.000000

10 CLOSED12 Closed 0.0000000 27.158980 1.163215291 0.30078257 0.000000

11 CLOSED13 Closed 0.0000000 49.230652 1.656090993 1.91265888 0.000000

12 OPEN1 Open 0.0000000 90.395816 9.364389841 0.21234308 0.000000

13 OPEN5 Open 11.0626751 12.249153 65.022380380 7.37859119 2.666142

14 OPEN6 Open 0.0000000 50.722702 18.254838800 19.49602083 16.196510

15 OPEN7 Open 1.6407267 12.531904 5.440881254 80.14602110 0.000000

16 OPEN8 Open 0.4651242 30.282063 0.000000000 4.48772342 6.696965
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17 OPEN9 Open 1.3036137 51.604957 10.715423670 32.87126052 0.000000

18 OPEN10 Open 0.0000000 13.216017 0.928382240 62.69442508 7.570645

19 OPEN11 Open 0.4194916 19.561325 0.447708271 25.71700725 42.673005

20 OPEN12 Open 0.0000000 98.025418 0.693246953 0.41623789 1.062957

21 OPEN13 Open 1.2997738 2.338562 3.956611394 1.66878320 2.624613

22 OPEN14 Open 0.0869813 22.348482 14.653372200 2.46342587 42.581546

23 OPEN15 Open 0.0000000 35.446637 0.524122614 3.93167556 54.101267

24 OPEN16 Open 0.1466321 48.561367 0.729186303 42.91372835 0.000000

POM

1 0.00000000

2 0.11383878

3 0.00000000

4 10.07640173

5 51.68915922

6 0.00000000

7 40.05571447

8 0.16915935

9 3.57907386

10 70.79541494

11 39.82116557

12 0.02745106

13 1.62105789

14 3.42818334

15 0.00000000

16 0.47804048

17 2.67615400

18 3.21637062

19 11.38538246

20 0.00000000

21 84.00982780

22 4.51701742

23 5.99629839

24 6.47894783

Now, using the columns only with the proportions of prey in the diet (columns
3 - 13), let’s create a distance matrix using the dist() command, and using the
default metric of dissimilarity, euclidean distance:

> dist.pinf<-dist(pinfish_diet[,2:6])

> dist.pinf

1 2 3 4 5 6

2 3.4601927

3 4.8047895 7.6840590

4 20.2039793 23.5449766 16.4581510

5 56.2761476 59.1574382 51.5430475 39.1562409

6 23.4962850 26.0530194 20.7702051 20.1579621 43.2526093
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7 51.8758360 54.7861382 47.2094422 35.2467771 9.4624404 38.8487974

8 3.5599391 2.6928688 8.2313746 22.9169029 59.6096744 26.5305917

9 5.3416541 8.2635315 0.7842533 15.9222576 51.0235661 20.6145188

10 77.9063318 80.8127838 73.1860424 60.2353870 21.6667324 63.6784391

11 53.2507900 56.1848019 48.5411788 35.9436883 3.9621923 40.4296542

12 11.3507025 14.5455133 9.8451474 11.1316346 50.0656868 22.2845385

13 119.0548838 122.4771416 115.8763137 99.7094826 83.1153231 106.8184500

14 58.7845718 61.9881966 54.9763665 41.0352793 29.9225404 47.7355599

15 129.6983053 132.0933143 126.3731100 117.5357215 97.5108169 117.4148085

16 74.5595422 77.4540035 69.8404532 57.2240197 18.8491220 60.1371232

17 62.9916900 65.8082098 59.4425000 48.9455658 38.9602977 51.7133223

18 116.4785009 118.9894820 112.7469397 103.1822570 79.3733122 103.4146173

19 90.8675620 93.7115811 86.3998652 74.5268120 41.6589907 76.1831212

20 1.7884950 1.7548664 6.0546317 21.7974886 57.5862294 24.8957998

21 105.6957686 108.6628581 101.0097514 87.5473882 49.6132384 90.5023319

22 84.5876181 87.7566168 80.0932290 65.3068394 31.4910878 70.7046982

23 68.7521267 71.6539459 64.0333056 51.4056280 13.1395304 54.7555684

24 71.8087420 74.1965357 68.3524781 60.5022672 48.0348251 60.8170778

7 8 9 10 11 12

2

3

4

5

6

7

8 55.2645255

9 46.6134567 8.7509522

10 27.6790337 81.2286961 72.6587331

11 6.3181382 56.5848771 47.9946119 24.7487317

12 45.8487730 13.1076872 9.5395668 71.2930967 46.8625606

13 84.7463048 121.2815702 115.3233498 74.7727730 83.1803545 108.2730965

14 23.9339048 61.6449774 54.2602840 38.9844482 27.0859571 50.3097441

15 92.3116089 132.5086910 125.6494296 90.8996966 96.7230175 124.8512494

16 23.2947007 77.9316514 69.2872662 6.0055736 21.4662223 68.1895365

17 30.8129810 65.8871672 58.7026818 46.7892338 36.1912154 56.7324899

18 75.0017293 119.5097879 112.0297656 71.4792626 78.9937228 111.4220477

19 40.7145624 94.2220413 85.7434151 29.6731520 42.5522051 84.7621392

20 53.2065512 2.7636713 6.6161965 79.2329338 54.5904700 12.9151616

21 54.8043350 109.0065983 100.4712605 28.0048444 52.5108249 98.6606221

22 35.9377807 87.7200681 79.5200512 16.1945136 33.3895809 76.3502451

23 17.6949871 72.1127199 63.4786017 10.1413191 15.6267739 62.3638119

24 40.0015406 74.7274626 67.6343818 53.3166859 45.8587000 67.5288611

13 14 15 16 17 18

2

3

4

5



5

6

7

8

9

10

11

12

13

14 70.1483410

15 105.6758425 81.4236535

16 76.4342936 34.9378769 87.1079171

17 80.9570899 17.2560714 68.8253306 41.4700849

18 95.4672698 66.8305660 20.2509520 67.8265092 55.4596413

19 76.4275065 40.7277847 61.6274442 26.5946245 38.4737791 41.9523447

20 120.7614497 60.3116341 130.8205416 75.8817837 64.3266190 117.6396106

21 70.3132643 59.8431713 88.4936466 31.7241447 65.6358689 69.4019774

22 58.9879027 37.2186744 88.1634485 18.7717806 47.4020750 69.8172444

23 77.7207544 31.4242204 89.1668237 5.8601471 38.7967929 70.2444359

24 92.4263062 32.7915841 58.1893269 47.5831372 16.2472360 45.2856339

19 20 21 22 23

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 92.1749633

21 33.3171867 107.0623781

22 30.6269641 86.0674320 25.4194786

23 30.1480851 70.0757691 37.3285531 21.6032602

24 37.6975353 72.9104916 69.3671321 56.0939928 45.9845101

This matrix is a result of the euclidean distance metric applied to each case,
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> scatterplot3d(Plant,Epifauna,Infauna)
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Figure 2: The 3D scatter plot of the proportion of plants, epifauna (small benthic
critters), infauna (larger benthic worms) in the stomach contents of pinfish from
Core Sound, NC.

across the columns of prey, so the similarity (low distance = high similarity) of
the diet of fish 1 is given relative to that of fish 2,3,4,5 etc. To illustrate the
similarity of the fish for just three of the prey types, I will create a 3D scatter
plot (but download R package scatterplot3d first) with points representing the
individual fish stomach contents along an axis devoted to three prey types:

> library("scatterplot3d", lib.loc="C:/Users/Joseph/Documents/R/win-library/3.0")

> attach(pinfish_diet)

The points in Figure 2 represent the diets of each pinfish. Some fish plot close
together in the 3D plot, they have similar diets (based on only these three
prey types). The pinfish plotting close to one another will have low euclidean
distance, thus high similarity. Imagine a straight line connecting each pair of
fish, that is the euclidean distance. The matrix we computed above considered
all they prey in the diet, so it is a better estimate of similarity, but it is impossible
to visualize with a graph.
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1 Clustering Strategies

A whole other area to consider in clustering multivariate data, beside which
distance metric to use, is to choose an appropriate clustering algorithm, i.e.,
what is the best clustering strategy? We could start like a child with all her
toys laid out separately and start by putting ones together in piles if they have
a high similarity (low distance), creating some number of piles. These piles
then could be grouped as well in a hierarchy of similarity. This is called an
agglomerative clustering strategy. The child could also have one huge pile
of toys and start dividing the huge pile into some number of different smaller
piles based on similarity. This is called a divisive clustering strategy. Both
are hierarchical. There is a type of strategy called k-means clustering. If you
know how many large groups or piles you ultimately want, say three groups,
you could specify k-means clustering with k = 3. Spam email is often sorted
this way (known sender, unknown sender OK, unknown sender SPAM).
The clustering process is iterative. The agglomerative strategy starts with the
separate cases and groups them together in larger and larger piles based on
the linkage criterion that you specify. Do you group with the closest one in
vector space (most similar by distance metric chosen? If the groups get bigger
and bigger, which point or group of points is used to judge the similarity to
other points and groups (piles)? The average, median or centroid similarity of
cases within each group? The nearest group member in vector space for the two
groups? Thus, there are many linkage methods to choose from. In R, a number
of different clustering methods are provided. Each clustering algorithm uses a
different method to link the cases or groups of cases.

• The complete linkage method finds similar clusters based on the farthest
away points within each group’s points. Default method in R

• The single linkage method finds similar clusters based on the nearest
points to the ones in each cluster; it adopts a ”friends of friends” clus-
tering strategy. Creates chains of groups.

• Ward’s minimum variance method aims at finding compact, spherical
clusters.

• Median linkage use the median distance measure with each cluster to join
groups.

• Centroid linkage computes coordinates for a central point within each
cluster in vector space and uses this centroid to join groups.

The other methods can be regarded as aiming for clusters with characteristics
somewhere between the single and complete link methods. Note however, that
the methods median and centroid do not lead to monotonic distance measure,
and the resulting dendrograms can have so-called inversions (which are hard
to interpret). These choices are complicated and will give different cluster den-
drograms (chaining in single linkage). You can try experimenting with different
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> plot(pinfish.clust, labels = pinfish_diet[,1])#plots dendrogram and labels ends

> rect.hclust(pinfish.clust,h=50)#this makes a cluster cut-point at height=50
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linkage methods; you should feel good if they seem to produce the same clusters
over time. If they produce different clusters each time you use a new linkage
method, there may be problems with extreme values in the underlying data.
The commandhclust() used on a distance matrix object is what will perform a
clustering algorithm, using the complete linkage (default). Let’s try this on our
distance matrix from the pinfish diet data:

> pinfish.clust<-hclust(dist.pinf)

Then, we can plot the resulting cluster output object as a dendrogram, by using
the plot () command. Let’s make a cluster dendrogram of the pinfish diet data
Height in these dendrograms is equivalent to the euclidean distance. Fish with
the most similar diets have low heights at which the linking method joined them.
There are many ways to cut a dendrogram, you could also use k= 2 instead of
h=50 in the code to split the clusters into two major clusters, for example. It
is often best to leave it to the reader or viewer to do this task, the groups may
be obvious. Here it is not so obvious that the pinfish ate different diets in the
trawled and non-trawled (closed) areas. There may be one large cluster of fish
from the open areas, but two from the closed are also grouped there. We could
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try using different distance metrics, or different linkage methods. There are
other statistical methods to generate probability values for each branch of the
cluster diagram.

Probability clustering

There is an algorithm in R that allows you to generate a probability for the
cluster groups based on bootstrap methods. The name for ”bootstrap” comes
from the phrase ”to pull oneself up by one’s bootstraps” - this is impossible feat.
That is what the developers of bootstrap methods have done, created some
statistical method that is impossible, or nearly so. It belongs to the general
approach of re-sampling statistics - the data themselves from a small sample
are used to generate a distribution to test against. The bootstrap approach in
pvclust() generates many possible clusters using the hclust() algorithm (but
dropping one point in each re-sampling run and then computing the clusters
again) and compares the re-sampled distribution of these clusters to the observed
clusters to see if the clusters you have discovered are ”real”. The package is
called pvclust (http://www.is.titech.ac.jp/ shimo/prog/pvclust/). It computes
p-values giving the uncertainty of the clusters, with 100% very certain. The
hypothesis is that the clusters are ”real” if the p-value is > 95%, that is, there is
a 5% error of being wrong and the clusters are false. Two kinds of p-values are
produced: approximately unbiased multi-scale bootstrapped probability (AU)
and normal bootstrapped probability (BP). The AU is better because it accounts
for bias in the bootstrapping approach. There is another function that allows
you to discover clusters with very large and small probabilities. When you run
it, it may take a long while to compute the final cluster dendrogram. You should
see progress message ”Bootstrap (r = 0.5)... Done” as it re-samples your data
and updates the user. Here is an example of pvclust() with pinfish diet data
from fish collected inside and outside Core Sound. pvclust likes the columns to
be what is clustered, so we will first transpose the diet matrix:

> library("pvclust", lib.loc="C:/Users/Joseph/Documents/R/win-library/3.0")

> pinfish.tr<-t(pinfish_diet[,3:8])#just get the columns with prey, transpose

> pinfish.pvclust<-pvclust(pinfish.tr,method.hclust="complete",

+ method.dist="euclidean")#run pclust on transposed matrix

Bootstrap (r = 0.5)... Done.

Bootstrap (r = 0.5)... Done.

Bootstrap (r = 0.67)... Done.

Bootstrap (r = 0.67)... Done.

Bootstrap (r = 0.83)... Done.

Bootstrap (r = 1.0)... Done.

Bootstrap (r = 1.0)... Done.

Bootstrap (r = 1.17)... Done.

Bootstrap (r = 1.17)... Done.

Bootstrap (r = 1.33)... Done.
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> plot(pinfish.pvclust)

> pvrect(pinfish.pvclust,alpha=0.95)#red boxes around clusters exceeding p=95%
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Next, we plot the dendrogram: So, we can see that there are some reliable
clusters with P=100%. The red boxes show which clusters have a high prob-
ability of being ”real”: they are likely to be true and present in future studies
95 times out of 100 (if the bootstrap probabilities are correct). There seems to
be a pattern that the fish from the open trawling areas group together in the
large cluster on the right side (fish IDs 14-24), these fish ate a lot of infauna,
but little plant material. But there are some exceptions: fish IDs 12 and 20
are not in this open-trawling cluster, they grouped with the closed-area fishes;
when you examine their diets in the original data, they ate a lot of plants, so
are grouped by the clustering strategy with the closed-area fish, which also ate
plants predominantly. Fish IDs 5,7,11 were collected in closed trawling areas and
are grouped with the open trawling area fish. Furthermore, there are low AU
p-values (in red color text) associated with edge numbers for some clusters(the
gray letters mark the dendrogram divergences 20,21,22). At edge number 19
and below, the AU p-values are all high, over 90%. Fishes in the middle two
clusters (IDs 10,21, and IDs 15,18) are not reliably grouped with either main
trawling-area groups classified here. They are intermediate in the groupings.
These results are not surprising, as the fish could easily migrate between the
areas, there was no fence separating trawling and non-trawling areas. The areas
were adjacent to one another, so we might expect some overlap. Nonetheless,
the clustering suggests there might be some trawling effects on pinfish diets.
Thus,in conclusion, we have found some natural groupings associated with the
trawling in Core Sound that is apparent in the pinfish diet data, and we can do
some additional hypothesis testing and experimentation on the ideas that have
emerged from the cluster dendrograms.
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