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a b s t r a c t

Ecosystem components interact in complex ways and change over time due to a variety of both inter-
nal and external influences (climate change, season cycles, human impacts). Such processes need to be
modeled dynamically using appropriate statistical methods for assessing change in network structure.
Here we use visualizations and statistical models of network dynamics to understand seasonal changes in
the trophic network model described by Baird and Ulanowicz [Baird, D., Ulanowicz, R.E., 1989. Seasonal
dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 501 (59), 329–364] for the Chesapeake Bay
(USA). Visualizations of carbon flow networks were created for each season by using a network graphic
analysis tool (NETDRAW). The structural relations of the pelagic and benthic compartments (nodes) in
each seasonal network were displayed in a two-dimensional space using spring-embedder analyses with
nodes color-coded for habitat associations (benthic or pelagic). The most complex network was summer,
when pelagic species such as sea nettles, larval fishes, and carnivorous fishes immigrate into Chesapeake
Bay and consume prey largely from the plankton and to some extent the benthos. Winter was the sim-
plest of the seasonal networks, and exhibited the highest ascendency, with fewest nodes present and with
most of the flows shifting to the benthic bacteria and sediment POC compartments. This shift in system
complexity corresponds with a shift from a pelagic- to benthic-dominated system over the seasonal cycle,
suggesting that winter is a mostly closed system, relying on internal cycling rather than external input.
Network visualization tools are useful in assessing temporal and spatial changes in food web networks,
which can be explored for patterns that can be tested using statistical approaches. A simulation-based
continuous-time Markov Chain model called SIENA was used to determine the dynamic structural changes
in the trophic network across phases of the annual cycle in a statistical as opposed to a visual assessment.
There was a significant decrease in outdegree (prey nodes with reduced link density) and an increase in
the number of transitive triples (a triad in which i chooses j and h, and j also chooses h, mostly connected
via the non-living detritus nodes in position i), suggesting the Chesapeake Bay is a simpler, but structurally
more efficient, ecosystem in the winter than in the summer. As in the visual analysis, this shift in system
complexity corresponds with a shift from a pelagic to a more benthic-dominated system from summer
to winter. Both the SIENA model and the visualization in NETDRAW support the conclusions of Baird and

Ulanowicz [Baird, D., Ulanowicz, R.E., 1989. Seasonal dynamics of the Chesapeake Bay ecosystem. Ecol.
Monogr. 501 (59), 329–364] that there was an increase in the Chesapeake Bay ecosystem’s ascendancy in
the winter. We explain such reduced complexity in winter as a system response to lowered temperature
and decreased solar energy input, which causes a decline in the production of new carbon, forcing nodes
to go extinct; this causes a change in the structure of the system, making it simpler and more efficient
than in summer. It appears that the seasonal dynamics of the trophic structure of Chesapeake Bay can be
modeled effectively using the
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E-mail addresses: luczkovichj@ecu.edu (J.J. Luczkovich), sborgatti@uky.edu
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SIENA statistical model for network change.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Ecosystem components interact in complex ways and change
over time due to a variety of both endogenous and exogenous
influences (e.g., season cycles, human impacts). Past work on food
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ebs has been mostly descriptive and deterministic (Polis and
inemiller, 1996). Models of empirical food webs were largely

tatic, based on data collected at a single point in time, or more typ-
cally, based on averaged data taken on a seasonal or annual basis.
uch static models are not appropriate for understanding dynamic
rocesses over time.

The use of dynamic modeling approaches for analyzing food
ebs has been described in two recent books (de Ruiter et al.,

005; Belgrano et al., 2005; Pascual and Dunne, 2006). These
ynamic models are based on simulated populations of species
nd their potential trophic interactions, in which populations
row or shrink over time depending upon the structure of the
etwork (represented as a matrix indicating the species each
ther species consumes). Various parameters determine popula-
ion growth, predation rates, interaction strengths, and predator
witching behaviors. The models attempt to recreate and match
mpirically derived structural characteristics of ecological net-
orks [e.g., the cascade model (Cohen and Newman, 1985), the

eneralized niche model (Williams and Martinez, 2000), the phy-
ogenetic constraint model (Cattin et al., 2004) and the minimum
otential niche model (Allesina et al., 2008)]. These models or their
ariants have been used to examine the system stability in the face
f changes in the removal and addition of species (for a review of
he complexity–stability debate, see Dunne et al., 2005; McCann
t al., 2005). Many of these dynamic simulations are unrealistic.
or example, some fail to include detritus. And in many cases, the
odels cannot be used to assess whether changes in the structure

f observed trophic networks over time are statistically significant.
An alternative approach is based on modeling changes in

bserved network properties over time using empirically measured
rophic networks. In a trophic network, or food web, the nodes are
pecies or groups of species (compartments), and a tie from one
ode to another denotes a carbon flow, or a predator–prey relation.
mpirical data on certain food webs are collected over time, pro-
iding temporal data sets for examination of food web dynamics,
nd these are typically analyzed using ecological network analy-
is software (e.g., Ecopath, Netwrk). The resulting measures are
hen presented as a series of whole ecosystem measures like ascen-
ency (Baird and Ulanowicz, 1989; Baird et al., 1998; Baird and
eymans, 1996; Ulanowicz and Robert, 2001; Scharler and Baird,
005; Heymans et al., 2007). These models are based on “snapshots”
f actually observed (as opposed to potential) species interactions

n ecosystems and describe how the properties of the networks
hange over time, and thus offer a basis for realistic description of
cosystem network dynamics. Because these models are based on
eal ecosystem measurements, they have great potential to yield
nsight for whole system behavior and ecosystem management.

However, time series analyses of high-level network measures
o not model the patterns of species–species interactions at a fun-
amental level. As a result, they cannot answer basic questions that
e would like to pose. For example, when is a food web observed at

ne time period significantly different than one observed at a later
ime? What attributes (habitat occupied, reproductive or juvenile
ife stage, defensive chemicals, morphology, behavior, body size,
tc.) of each species are associated with these ecosystem changes?

hen an external perturbation has occurred (like the construction
f a dam, harvest, introduction or removal of species, or a seasonal
r climate change), does the food web network shift significantly
o a new topology or structure afterward?

Analogous problems have been approached in the social sci-
nces in the analysis of social networks. Social scientists have

xamined dynamically changing social networks as people enter
nd leave groups and form and dissolve relationships. One impor-
ant approach (Snijders, 2001; Huisman and Snijders, 2003), based
n a continuous-time Markov chain model, conceptualizes pair-
ise interactions among nodes in a network as a function of a set
lling 220 (2009) 3133–3140

of parameters corresponding to tendencies to form certain micro-
structural configurations or motifs. Given longitudinal data, the
parameters and their standard errors can be estimated, enabling
statistical tests of differences in parameters across networks or
over time. We suggest that this social science methodology can be
effective in ecological settings as well, provided care is taken in the
selection of parameters and interpretation of results

1.1. Previous use of Markov approaches in ecology

Markov chains are stochastic models of the possible paths that
the states of any system can follow. Given a current state of the
system, transitional probabilities are estimated that govern the like-
lihood of transitioning to another state. A defining characteristic of
Markov models is that the probability of entering a given state at
time t is solely a function of the current state. A simple example is
a random walk Markov model in which the states of a system are
represented as nodes in a graph, and the next state is chosen at ran-
dom from the set of neighbors of the current node. No information
is needed about the history of the walk.

Markov approaches have been used previously in population
and community ecology to model species’ population growth and
interactions. One instance, called the Leslie matrix, is an age-based
population model in which the number of individuals in multiple
age classes is used to model the transition probabilities of individu-
als surviving to the next age class in each time step (e.g., Mollet and
Cailliet, 2002). Markov models have been used to study competitive
networks of species (Buss and Jackson, 1979), diversity–stability
relationships in ecosystems (Li and Charnov, 2001), and to model
transition probabilities of species surviving in rocky intertidal com-
munities (Wootton, 2001). There has not been an attempt to use the
continuous-time Markov chain approach to study food web net-
work dynamics (de Ruiter et al., 2005). Most of these approaches
are discrete-time Markov models in which they assume equilibrium
or steady-state conditions (e.g., the transition probabilities do not
change over time). In a continuous-time Markov model, the states
occur in a time sequence and the transition probabilities can change
continuously over time.

1.2. SIENA model

Snijders (2001) and Huisman and Snijders (2003) have recently
introduced a family of continuous-time Markov chain models
(CTMCM) for investigating the evolution of social networks known
as the SIENA model. The model is implemented in a well-known
computer program of the same name, SIENA (Simulation Investi-
gation for Empirical Network Analysis) Snijders et al. (2007). The
models specifically address both change in network structure (who
has ties to whom) and changes in node attributes (such as behav-
ior or body size). The basic principle underlying the SIENA model
is that changes in directed network ties are made as a function of
a node-level utility function – similar to those found in optimal
foraging theory – whose parameters the model estimates. Thus,
changes in the structure of the food web are modeled in terms
of changes in individual nodes’ behaviors as they maximize their
utility functions. The idea is that because predators consume prey
preferentially and exhibit prey switching behavior, this process cre-
ates a new network structure of trophic interactions at each time
period. The observed changes in the network are then used to esti-
mate the parameters of the process theorized to underlie these
changes.
At a larger level, the model conceptualizes change in terms of
transitions between states in a state space that consists of all possi-
ble combinations of network configurations (and, optionally, node
attributes). Because of the complexity and magnitude of possible
transitions under these conditions, the model makes three sim-
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Table 1
A list of the living and non-living compartments in the Chesapeake Bay network
model used by Baird and Ulanowicz (1989) and their numerical identifiers.

Living compartments
1 Phytoplankton
2 Bacteria in suspended particulate organic carbon (suspPOC)
3 Bacteria in sediment particulate organic carbon (sedPOC)
4 Benthic diatoms
5 Free bacteria
6 Heterotrophic microflagellates
7 Ciliates
8 Zooplankton
9 Ctenophores Mnemiopsis leidyi
10 Sea Nettle Chrysaora quinquercirrha
11 Other suspension feeders
12 Clam Mya arenaria
13 Oysters Crassostrea virginica
14 Other polychaetes
15 Polychaete Nereis sp.
16 Clam Macoma spp.
17 Meiofauna
18 Crustacean deposit feeder
19 Blue crab Callinectes sapidus
20 Fish larvae
21 Alewife and Blue Herring Alosa pseudoharengus and A. aestivalis
22 Bay Anchovy Anchoa mitchilli
23 Menhaden Brevoortia tyrannus
24 American Shad Alosa sapidissima
25 Atlantic Croaker Micropogonias undulates
26 Hogchoker Trinectes maculates
27 Spot Leiostomus xanthurus
28 White Perch Morone americana
29 Hardhead Catfish Arias felis
30 Bluefish Pomatomus saltatrix
31 Weakfish Cynoscion regalis
32 Summer Flounder Paralichthys dentatus
33 Striped Bass Morone saxatilis

Non-living compartments
J.C. Johnson et al. / Ecologica

lifying assumptions. First, as in any Markov process, transition
robabilities depend solely on the current state, rather than on
past trajectory over time. Second, there is a micro-step restric-

ion that network nodes can only make changes in one network tie
r behavior at a time. This means that all changes in the network
re sequential, and are not allowed to be simultaneous. This is a
estriction which makes modeling simpler because it breaks down
hanges in the smallest possible steps. Finally, nodes make choices
ndependent of other node’s choices, conditional on the current
tate of the system as a whole.

Applied to trophic networks, the SIENA model takes as input a set
f binary matrices of species interactions at each time period. The
robability of transitioning from one predator- and prey-relation
tate to another is modeled for all species across all time periods.
he structure of the food web evolves as the constituent species
ake changes in response to their local situations, such as changing

rey abundance.
Implicit in the model is the notion that species choose their

rey non-randomly (see, for example, Dell et al., 2005), reflect-
ng tendencies toward this or that micro-configuration. Models are
pecified in SIENA by selecting these micro-structures or motifs –
nown as effects – that reflect structural characteristics of theoreti-
al interest in modeling network dynamics. For example, in human
etworks, there is a strong tendency for positive ties such as friend-
hip to be reciprocated: if i names j as a friend, there is an increased
ikelihood that j names i as a friend. In food webs, we expect the
pposite effect: if species i preys on species j, it is unusual (but not

mpossible) for j to prey on i. To apply SIENA in a given research
roject, it is important to select theoretically meaningful param-
ters that are relevant to the setting (e.g., food webs) and to the
heoretical questions. For example, one effect available in SIENA is
outdegree” which reflects the tendency of a node to have ties to
any other nodes. Thus, outdegree represents prey diversity and is

trongly related to network connectance. Another relevant objec-
ive function is the number of transitive triples (in which species
eats j, species j eats species k, and species i eats species k). A

endency toward transitive triples indicates omnivory—feeding at
ultiple trophic levels.

The output of the SIENA model consists of a set of estimates
f the parameters, along with their standard errors. This allows
s to statistically test effects that are hypothesized to be among
he driving forces of dynamics of networks over time. The idea is
hat because predators consume prey preferentially, exhibit prey
witching behavior, and choose different prey over time, this pro-
ess creates a new network of trophic interactions at each time
eriod. As a null model, the CTCMC approach simulates the evo-

ution of the structure of networks by creating many such random
rophic networks, allowing predators to change a single new prey
ink randomly at each time period. These simulations of random
etwork evolution then serve as a null model to test the observed
istribution of trophic links in an actual ecosystem. By doing this,
e can compare ecological measures of the resulting networks

e.g., organizational metrics like ascendency, connectance, link den-
ity, cycling, indirect relations, preferential attachment of predators
uring network evolution, similarity of node attributes of interact-

ng species, etc.) against the null distribution of random networks,
llowing for a statistical tests of network structural properties over
ime.

.3. Example: Chesapeake Bay ecological network data
We illustrate the SIENA methodology by applying it to the Chesa-
eake Bay carbon flow network of Baird and Ulanowicz (1989).
series of seasonal food webs of the Chesapeake Bay, originally

escribed by Baird and Ulanowicz (1989), were modeled using the
arbon flow in a 36-compartment food web of the Chesapeake Bay
34 Dissolved organic carbon (DOC)
35 Suspended particulate organic matter (SusPOM)
36 Sediment particulate organic matter (SedPOM)

(Table 1). The model was originally constructed from published data
to reflect the measured seasonal changes in carbon flow among
the compartments. Due to migrations and seasonal fluctuations
in abundance, the model had 33 compartments in spring, 36 in
summer, 32 in fall, and 28 in winter. Species diversity increased
from the spring to summer, reaching the maximum then as sev-
eral new species developed or migrated into the system. Diversity
was lowest in the winter. In the summer, the system was a pelagic-
fish- and plankton-dominated system, with gelatinous zooplankton
becoming the dominant group. In the winter, the system was dom-
inated by flows within the detritus and benthos compartments.
Baird and Ulanowicz (1989) concluded that the Chesapeake’s sys-
tem throughput and respiration was greatest in summer and lowest
in winter, but that system organization as measured by ascendency
(average mutual information in the system normalized by through-
put) was greatest in winter, least in summer. They wrote: “These
quantitative results recapitulate the intuitive notion that carbon flow
dynamics in the Chesapeake Bay during the summer are both dissipa-
tive and less organized than those during the less active, cooler seasons”
(Baird and Ulanowicz, 1989, p. 355).

To illustrate the method, we have simplified the Baird and
Ulanowicz dataset by dichotomizing and transposing the carbon
flow matrix to create a binary diet matrix X in which Xij = 1 if
compartment i feeds on compartment j, and Xij = 0 otherwise.
Dichotomizing the data simplifies the interpretation of the model,

but of course results in reduced realism. Even so, the analysis should
reveal the major organizational and structural changes in the sea-
sonal shifts in the ecosystem, and allow us to test the structural
implications of the theoretical assertions advanced by Baird and
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lanowicz, such as increasing ascendency. It is also important to
ote that the SIENA method can, in principle, also be applied to
etworks with weighted links (e.g., representing carbon flows),
lthough there are some conceptual complexities with this that lie
utside the scope of this paper.

.4. Objectives

We will conduct a dynamic statistical analysis of the process of
easonal change in network structure of the Chesapeake Bay as it
hanges seasonally, with particular reference to the changes in sys-
em organization that occurred across seasons (e.g., the increased
scendency in winter) that were observed by Baird and Ulanowicz
1989). In doing this statistical analysis of seasonal change in system
rganization, we will also address the following questions: (1) does
he ecosystem trophic network change over time? (2) What are the
etwork structural characteristics of ecological interest, and how
o they change across seasons? (3) How does system complexity
hange over time? (4) What happens when species are added or
eave the system (seasonal migration of some species of transient
shes and invertebrates)?

. Methods

We use a combination of graphical (visualization of the network
ith NETDRAW, with species or compartments as nodes and arrows

howing carbon flows) and quantitative methods (SIENA model of
inary relations) to explore the Chesapeake Bay seasonal data.

.1. Visualizations

Network drawing software such as NETDRAW (Borgatti, 2002)
nables us to visualize changes in networks in a holistic, qualita-
ive manner. We advocate visualization as an aid to interpreting
nd checking the SIENA model output. Here we used NETDRAW’s
pring-embedding algorithm Eades (1984). The algorithm concep-
ualizes the network as objects interconnected by springs which
equire energy to pull apart but also push back if nodes get too close.
he algorithm begins by arranging the nodes randomly in space,
nd then begins moving them in such a way as to minimize energy
Gajer and Kobourov, 2002). In general, this algorithm results in a
ayout in which nodes with the greatest link density are at the center
f the plot and nodes that are more isolated are on the periphery.

For the sake of these visualizations and to be in keeping with
he original network analysis, carbon flow in mg C m−2 yr−1 for
ach season was imported from the Network program of Baird
nd Ulanowicz (1989). An attribute file was created that listed for
ach node whether it was found in the pelagic realm or the ben-
hic habitats of Chesapeake Bay. These nodes and their carbon flow
inks were graphed using the spring-embedder algorithm of NET-
RAW to arrange the nodes. Nodes were color-coded for habitat
ssociations (pelagic or benthic). The line thickness was set to be
roportional to carbon flow with arrows pointing from the carbon
roducing node (prey) to the consumer of the carbon.

.2. SIENA analysis
We used Version 3.17s of the SIENA program, which forms part
f a larger suite of software for analyzing social networks called
tocNet, available on the web.1

The specification of the model is as follows:

1 http://stat.gamma.rug.nl/siena.html.
lling 220 (2009) 3133–3140

(1) A continuous-time parameter. Time series over M observed times
t1 < . . . < tm < . . . tM Although modeled in continuous-time, it
is observed in discrete units tm, m = 1, . . ., M. Here seasons:
spring–summer (t1 − t2), summer–fall (t2 − t3), fall–winter
(t3 − t4).

(2) A set of nodes (compartments) I = {1, . . ., n}.
(3) Outcome space of possible networks of relations among nodes

(compartments), X. The networks are time-dependent n × n
adjacency matrices.

(4) Node (compartment)-dependent attributes V and pair-dependent
(dyadic) attributes W. Attributes can be constant or can vary
across time.

The model examines two simultaneous dimensions, the rate of
change and the direction of change. The model assumes that links in
the food web change in steps where a single link may be changed.
The submodel for such a step is that one predator i is randomly
chosen, and either creates a new outgoing link (i.e., chooses one
additional prey), terminates one existing link (i.e., stops consum-
ing one current prey), or keeps the current situation. Thus, given
the choice of the predator i, there are n possibilities, composed
of n − 1 changes and one non-change. The step should therefore
be regarded as an opportunity for change rather than certainty of
a change. The probability of each of these n possibilities is pro-
portional to exp(fi(x)) where x is the network that would obtain
after this change (or non-change) and fi(x) is the so-called objective
function. Thus the objective function may be regarded as a utility
function of the system that the predators try to maximize, with ran-
dom perturbations, so that the change is not deterministic but has
a probabilistic tendency to move into a direction of higher objec-
tive functions. This, however, yields a rather complex model that
prohibits direct calculations. Therefore, the model is implemented
using a simulation approach whereby parameter estimates are pro-
duced through an iterative Monte Carlo procedure based on method
of moments estimation (Snijders, 2001). The objective function is
represented as a weighted sum,

∑

k

ˇksik(x) (1)

where sik(x) are statistics driving the prey selection, and ˇk are sta-
tistical weights to be estimated from the data. The parameters ˇk
are non-standardized coefficients. The choice of statistics for mod-
eling the food web dynamics was made as follows, in accordance
with basic notions in network modeling.

1. Outdegree: the outdegree of predator i, i.e., number of prey
species eaten by i.

si1(x) =
∑

j

xij (2)

2. Indegree popularity: the sum of indegrees of all the prey of preda-
tor i, i.e., the total number of other predators who also are preying
on the prey of i.

si2(x) =
∑

j

xij

∑

h

xhj (3)

An increase in this effect indicates a stronger tendency to prey on

those compartments that already have a high number of preda-
tors; the weight for this effect will reflect level and tendency of
indegree variance of the food web.

3. Transitive triplets: the number of transitive triplets with predator
i in the “sending” position, i.e., the number of pairs of prey j, h

http://stat.gamma.rug.nl/siena.html
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such that i eats j and h but also j eats h.

si3(x) =
∑

j

∑

h

xijxjhXih (4)

This reflects a measure of network closure or clustering. Ecolog-
ically, this will reflect tendencies toward omnivory.

Weights for several other statistics were estimated in an explo-
ative stage, but these were not significant and led to over-fitting
or this relatively small data set, as evidenced by high standard
rrors. The other statistics explored included a tendency to avoid
eciprocity (where i eats j but also j eats i); a tendency of those
ompartments that prey on many other compartments (‘high out-
egree’ after transposition) to continue preying on many, or even
ore compartments; and differential preferences between benthic

nd pelagic species.

.3. Model estimation using a Monte Carlo procedure

The mathematical details of the estimation procedure can be
ound in Snijders (2001). The system of equations for the parame-
er estimates cannot be solved analytically or numerically. Thus,

stochastic approximation is used based on an approximation
f moment estimates through a simulation of random adjacency
atrices depending on provisional values of the parameters ˇk. The

arameter estimates are iteratively updated in repeated simula-
ions of the adjacency matrices. To allow for differentiation between
he ecosystem dynamics across the seasons, the model was esti-

ated for each of the three transitions spring to summer, summer
o fall, and fall to winter. Parameters can be tested by Wald tests,
.e., testing the ratio of parameter estimate to standard deviation in
he standard normal distribution.
In all analyses, we have restricted the outdegree (or consump-
ion) relations of producers [phytoplankton (node 1) and benthic
iatoms (4)] fixing these as 0s (structural zeros). In this way, they
re constrained to be non-feeding nodes. Such an analysis mim-
cs ecological realities of producers in that they can be chosen as

ig. 2. Carbon flow network of Chesapeake Bay in winter (arrow thickness proportional to
elagic compartments and white nodes indicating benthic compartments. See Table 1 for
Fig. 1. Carbon flow network of Chesapeake Bay in summer (arrow thickness pro-
portional to flux in mg C m−2 yr−1) from Baird and Ulanowicz (1989), with black
nodes indicating pelagic compartments and white nodes indicating benthic com-
partments. See Table 1 for compartment codes.

prey, but do not choose other nodes to consume. We assumed that
the non-living compartments [dissolved organic carbon (34), sus-
pended particulate organic carbon (35) and sediment particulate
organic carbon (36)] all could function as a kind of predator, in that
they receive carbon in this model, just a as a predator would.

3. Results
3.1. Spring-embedder visualizations

We visualize the networks in their original form as described
by Baird and Ulanowicz (1989). There was greatest diversity (36
compartments) and system complexity during the summer in

flux in mg C m−2 yr−1) from Baird and Ulanowicz (1989), with black nodes indicating
compartment codes.
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Table 2
Descriptive statistics for food web transitions in Chesapeake Bay.

Spring Summer Fall Winter

Mean degree 2.86 3.03 2.83 2.42
Number of new links
created in next season

13 6 6 −

Number of new links
terminated in next
season

7 13 21 −

Reciprocal links
(

4 4 5 6
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mutualisms)
ndegree variance 6.0 7.0 6.4 6.8
ransitivity index 0.27 0.30 0.31 0.40

hesapeake Bay and this is reflected in the visual display (Fig. 1).
n this diagram, black nodes represent the plankton and pelagic
pecies, and the white nodes show benthic groups. Most of the car-
on is flowing through the plankton and pelagic nodes at the left
ide of the plot (node 35 is suspended POC, which is linked directly
o node 1 phytoplankton and node 7 ciliates, which themselves are
inked because ciliates eat the phytoplankton, indirectly linked to
ode 6, flagellates). Lesser amounts of carbon are flowing in the
enthos (node 36 is sediment POC), but there is a concentration
f nodes and outdegree on these nodes is large. These are the two
ajor nodes through which most carbon passes in the summer, the
ost active and connected one in the water column. Sediment POC

36) is detritus, and many arrows point there, tracing the flow of
arbon as they die, hence the central position in spring-embedder.

The increased organization of the system is evident when com-
aring the summer plot (Fig. 1) with the winter spring-embedder
Fig. 2). There are fewer nodes [28 nodes, eight species are absent
n winter, as shown in the upper right of Fig. 2, the unconnected
odes: (10) sea nettle, (20) fish larvae, (24) American shad, (27)
pot, (30) bluefish, (31) weakfish, (32) summer flounder, and (33)
triped bass], which have migrated from the system or died. Most
f their carbon has flowed to the benthos, and most of these were
elagic during the summer (black nodes)]. The system in winter
ppears to be less complex and more focused around the detritus
ode (36) which is linked directly to the sediment bacteria (3) and
ther benthic predators.

.2. SIENA continuous-time Markov chain model results

Table 2 gives descriptive statistics of the food web network of
hesapeake Bay for each season. The mean degree was highest in
ummer (2.83 links per node), and lowest in winter (2.42 links per
ode). During the transition from spring to summer, more links
ere created than deleted (13 new links were created in summer,

nd 7 links were lost), while the converse was true for the transi-
ions from summer to fall (6 links were created in fall, and 13 were

ost) and fall to winter (6 links created in winter, but with 21 links
ost). Together, these results suggest that the network became most
omplex in the summer and simplified in the winter. The total num-
er of reciprocal links varied from 4 to 6, and these are normally

mportant in social networks, for example friendship. However, in

able 3
IENA Model parameter and effect estimates and standard errors (in parentheses) for eac
y the standard error.

Spring–summer Summer–fall

ate parameter 0.6726 (0.1573), Z = 4.276 0.6493 (0.1531
utdegree (prey link density) −2.1805 (0.5745), Z = 3.795 −2.8713 (0.790

ndegree (predator) popularity 0.1816 (0.0972), Z = 1.914 0.1104 (0.1203)
ransitive triplets 0.2928 (0.2241), Z = 1.307 0.5102 (0.2831

ate parameters in all seasons analysis: rate parameter spring–summer 0.6906 (0.1520)
0.1935).
lling 220 (2009) 3133–3140

ecological systems, these represent mutualisms, and in Chesapeake
Bay there are mutual connections between the non-living sedi-
ment POC and some species like blue crabs, ciliates and zooplankton
(detritivory).

The variance of indegrees (number of predators for each com-
partment) was between 6 and 7, clearly higher than the mean
degree (which would be expected for a Poisson distribution, implied
by a random network). The transitivity index is defined as the
observed number of transitive triplets (ordered triples i, j, h where
i eats j, j eats h, and i eats h) divided by possible number of transi-
tive triplets (ordered triples i, j, h where i eats j and j eats h). The
transitivity index increases from 0.27 for spring to 0.31 for fall and
then increases sharply to 0.40 for winter.

Results of parameter estimation are shown in Table 3. The SIENA
model was run separately for each seasonal transition (spring to
summer, summer to fall, and fall to winter) and for all four seasons
together (all seasons). Convergence of the model algorithm was
excellent for all models. The rate parameter is the expected num-
ber of opportunities for changes per predator compartment, and is
a necessary ingredient of the model but less important for inter-
pretation. The outdegree (prey link density) parameter is required
to fit the balance between the number of created and deleted links.
The parameters are on the log-odds scale: an outdegree parameter
of 0 would mean (if all other weight parameters likewise were 0)
that, when comparing two pairs (i, j) where there is no tie from i to
j (i does not prey on j) and (h, k) where there is a tie from h to k (h
does prey on k), the probability of creating a new tie from i to j is just
as large as the probability of terminating the tie from h to k. Given
that each species has only a limited number of other species that it
preys upon, i.e., there are many more non-ties than ties, this would
mean a sharp increase in the number of ties, which is unrealistic.
In line with this, the estimated outdegree parameters are nega-
tive, indicating that predators are in fact selective. The outdegree
parameters also become more strongly negative over the seasons,
reflecting that whereas more ties are created than terminated when
going from spring to summer, relatively more and more ties are
terminated when going toward Fall and especially Winter. In two
of the transitions [spring–summer (−2.1805, z = −3.795, p < 0.001)
and summer–fall (−2.8713, z = −3.632, p < 0.001)] and over all sea-
sons (−3.264, z = −5.607, p < 0.001), the predators show significantly
negative outdegree parameter weights.

The weight of indegree popularity, the tendency for predator
compartments to prey on those compartments that already have
many predators, was significantly positive in the spring–summer
transition (ˇk = 0.1816, z = 1.914, p < 0.05), but not for the
summer–fall transition (ˇk = 0.1104, z = 0.865, p > 0.10) or the
fall–winter transition (ˇk = 0.6027, z = 0.982, p > 0.10). However,
the indegree popularity weight ˇk = 0.1888 is significantly positive
when compared across all seasons (z = 2.198, p < 0.05, Table 3). Thus
over all seasons, and especially in the spring–summer transition,
predators to be selected by predators.
Finally, the transitive triples effect is an indication of how many

clusters of three-compartments are interacting in the ecosystem.
This effect measures the closure of a network, because when

h period of seasonal change. A Z-score is obtained by dividing the effect estimates

Fall–winter All seasons

), Z = 4.241 1.0195 (0.1996), Z = 5.108 See below
5), Z = 3.632 −8.9757 (6.4103), Z = 1.400 −3.2641 (0.5821), Z = 5.607
, Z = 0.865 0.6027 (0.6140), Z = 0.982 0.1888 (0.0859), Z = 2.198
), Z = 1.802 1.9975 (1.1615), Z = 1.720 0.6635 (0.2100), Z = 3.160

. Rate parameter summer–fall 0.6472 (0.1457). Rate parameter fall–winter 0.9767
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Table 4
A comparison of the normalized ascendency (Baird and Ulanowicz, 1989) and the
transitivity index (number of transitive triples divided by the number of possible
transitive triples) of the four seasonal networks in Chesapeake Bay.

Ascendency Transitivity index
J.C. Johnson et al. / Ecologica

redator i is feeding from j and h, and j is also feeding on h, it
uggests a closed interaction around these nodes. It is associated
ith omnivory in lower trophic levels. Low weights for transitive

riples would be found in linear chain-like relations in the food
eb network; high weights are associated with clusters of nodes

hat are heavily interconnected. As the number of observed tran-
itive triples increases relative to the number that are possible
transitivity index), the network can be thought of as becom-
ng more closed, or dependent on internal cycling of carbon. An
ncrease in transitive triplets would be indicated by a positive

eight associated with a significant p-value. In the Chesapeake
ay data, the weight of transitive triplets is positive but non-
ignificant for the spring–summer (ˇk = 0.2928, z = 1.307, p < 0.10).
owever, the transitive triples weight is increased and significant

or the summer–fall transition (ˇk = 0.5102, z = 1.802, p < 0.05) and
uch greater in the fall–winter transition, which is also signif-

cant in spite of the higher standard error (ˇk = 1.9975, z = 1.72,
< 0.05). When computed over all seasons, this effect was highly

ignificant (ˇk = 0.6635, z = 3.160, p < 0.001). Taken together, these
esults on transitive triples suggest that the network was rela-
ively open in spring through summer transition, because it was
xpanding as new species immigrated or re-appeared from win-
er hibernation, but became more closed from summer through
inter as primary production of organic carbon decreased and

ompartments out-migrated, went into hibernation or locally
xtinct.

. Discussion

We visualized the Chesapeake Bay trophic network using the
ublished carbon flow data (Baird and Ulanowicz, 1989) and
bserved a dramatic change in the network’s structure as well
s shifts in the carbon flows. Based on visual inspection of the
etwork diagrams, the carbon flows during summer were dom-

nant in the pelagic zone and interconnected with benthic sinks
sediment POC), while during the winter dominant flows were asso-
iated with the benthos. We used a statistical method devised for
ocial network analysis to assess seasonal changes in trophic net-
ork structure (SIENA continuous-time Markov chain model). This
ethod allowed a mathematically precise way to look at the struc-

ural dynamics of the system, by comparing the observed structure
t each season with Monte-Carlo simulations of the network struc-
ure during transitions between seasons and across all four seasons.
etwork topology changed significantly during the transition from

pring to summer, becoming more complex initially, then increas-
ngly less complex during the transitions from summer to fall, and
all to winter. There was a net increase in the number of new links
rom spring to summer, but a net decrease in subsequent seasons.
etwork density and mean degree (links per node) declined from

ummer to winter along with the number of nodes. The transitivity
ndex (a measure of network closure) increased from summer to

inter.
These changes in network structure were largely in agreement

ith the observations of Baird and Ulanowicz (1989) that the sys-
em was becoming more organized (ascendent) in the winter, with

lower system throughput. However, we do not agree with the
onclusion of Baird and Ulanowicz (1989) that the Chesapeake
cosystem “. . . maintains essentially the same topological struc-
ure throughout the cycle of seasons”. In fact, we conclude just
he opposite, that the structure of the ecosystem network changes
ignificantly during the summer to winter transition, becoming

ignificantly more closed (as indicated by the increasingly posi-
ive transitive triples), less chain-like and more interconnected. We
onclude that this seasonal trend toward network closure is sta-
istically non-random, and that the Chesapeake ecosystem shows
igns of increased organization around fewer nodes and increased
Spring 0.626 0.27
Summer 0.615 0.30
Fall 0.646 0.31
Winter 0.666 0.40

efficiency as energy available from primary production declines in
the winter.

The statistical analysis of the Chesapeake’s structural data also
found changes that would reflect aspects of ascendency, in that the
network structure became more clustered and closed from sum-
mer to winter, which is another way of saying that it became more
organized. Ascendency is a concept based on energy throughput
and average mutual information (AMI flow diversity) and is asso-
ciated with system organization and development (Ulanowicz and
Robert, 2001). Our structural measures that best correlated with
the normalized ascendency (corrected for throughput differences
in the different seasons) patterns described by Ulanowicz and Baird
(1989) are the transitive triples effect and the transitivity index
(the number of transitive triples scaled as a fraction of the poten-
tial number of transitive triples). Transitivity increased in winter,
just as did normalized ascendency (correlation between transitivity
index and ascendency = 0.85; Table 4). The increase in the transi-
tivity index from summer through winter suggests that the food
web trophic levels should be more compressed in the winter than
the summer, because the transitive triples mostly involve the detri-
tal compartments (Fig. 2). Baird and Ulanowicz (1989) also noted
that the Chesapeake Bay’s trophic transfer efficiency declined at
the highest trophic levels in winter. In fact, the ciliates and blue
crabs, which are involved in the transfer of energy to the highest
trophic levels the network, are responsible for more of the pro-
duction reaching the fifth trophic level in the summer, whereas in
winter little production reaches that level. In winter the greatest
level reached is trophic level four. This decreased production that
reached the fifth trophic level in the winter was correlated with the
high transitivity index and large weight of transitive triplets. Both
of these transitivity measures increased in the winter, which Baird
and Ulanowicz (1989) observed was responsible for the compres-
sion of the trophic levels in that season, due to changes in structure
and carbon flow as ciliates and blue crabs became more dependent
on sediment POC and less on primary production from the plankton
in the winter.

It should be noted that we did not assume any particular niche
from which to draw prey at random or constrain the diet for any
species, other than specifying that producers could not have prey.
Therefore, in our simulations, consumer groups were allowed to
feed on any of the other species at random. This decision to preda-
tors to consume any prey is a bit broad; e.g., striped bass can
potentially consume phytoplankton in some of the null models used
for statistical comparison. However, it is important to realize that
the SIENA model permits specification of “structural zeros”, which
forbid particular ordered pairs of nodes from interacting, as well
as “structural ones”, which require particular pairs to interact. In
this introductory analysis, we used these options only in a lim-
ited way, namely to forbid primary producer compartments from
having prey. In future simulations, we could use this model fea-
ture to specify which links must always occur or could never occur.

Clearly, this approach differs from the niche model (Williams and
Martinez, 2000), the cascade model (Cohen and Newman, 1985)
and the phylogenetic constraint (Cattin et al., 2004) model, which
impose additional constraints on which nodes can be connected in
dynamic simulations using ecological niche axes, trophic levels, or
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hylogenies. We feel the SIENA approach is an important contri-
ution in that it does not assume any kind of a niche axis or other
onstraint when nodes are allowed to change their link distribu-
ion over time, although, clearly, some restrictions must be made
or producers.

Like other dynamic models, the continuous-time Markov chain
odel in SIENA is based on a binary matrix of node interactions,

nd not carbon or energy flow. There is a need to explore the appli-
ation of this approach for both carbon flows and predator/prey
ata, including the ability to handle valued data of different forms
e.g., carbon, percent of diet). The developers of SIENA are currently
orking on extensions of the model to valued data. However, the

ssue is more complex than binary versus valued data. An important
onsideration is the fit between the different types of ecological net-
ork and food web data and the assumptions of the SIENA model
ith respect to nodes making choices that create or delete network

inks. Flows and predation reflect different aspects of the ability
f network actors (e.g., compartments in a food web) to initiate
hoices. Both Patten (1981, 1982) and Fath (2004) have discussed
ow both the receivers and generators of transactions in ecological
etworks have dual roles, in that both have control and influence
ver the maintenance of the configuration of an ecosystem’s overall
ow storage. These controls, both up and down the system, need to
e considered more closely in future applications and alterations of
he model.

An important advantage of the SIENA modeling approach we
ave presented here is that it not only provides indications of the
mount of change in a network, but provides a formal way to specify
he kinds of structural changes that have occurred. This is accom-
lished via the specification of various types of subgraphs or motifs
hat the model parameterizes. Further, the application of a statis-
ical model allows (a) the measurement of change parameters for
ach kind of micro-structure, such as transitivity, while simulta-
eously controlling for other changes, and (b) permits significance
ests on food web statistics. The most recent versions of the model
lso permit using multiple relations (such as non-trophic interac-
ions) as covariates, in addition to taking account of both constant
nd variable attributes of network nodes.

In the future, the model can be made even more useful by iden-
ifying and incorporating structural effects that are more central to
cological network theory and analysis, particularly those that are
mportant for understanding ecosystem dynamics. This is a promis-
ng area of research, particularly as longitudinal ecological network
ata sets become more available. We end by suggesting that this
pproach could help in answering some of the vexing questions
elevant to recent interests in complexity and adaptive food web
rchitecture.

.1. A concluding observation on economic and ecological
etworks

Given that we have used a model developed in the social sci-
nces to illuminate ecological data, it is interesting to speculate on
he similarity of the seasonal changes in the Chesapeake’s trophic
etwork and the current condition of US and global economic net-
orks. Summer in Chesapeake Bay is like the US economy during

he period of 1990–2008; energy, credit and capital were unlim-
ted or at least being produced much faster than they were being
onsumed. However, the US’s, and indeed the world’s, economic
etwork is now entering the economic equivalent of the Chesa-
eake Bay’s winter: a slow-down of available energy (declines in

roductivity of oil, associated with the Iraq war or simply the “End
f Oil” phenomenon), loss of credit and capital, and the resulting

oss of the economic nodes (bankrupting of businesses, increased
nemployment, downsizing of work staff, including jobs being

ost at our own university). These changes, however, can lead to
lling 220 (2009) 3133–3140

increased energy efficiency and improve organizational structure
of the ecosystem and the economy, especially as the ecological or
economic network shrivels and simplifies. Natural selection will
preserve the most energetically or metabolically efficient nodes
after the period of reduced resources at the producer level. Whether
or not the global economy will recover as the Chesapeake’s trophic
network does each new spring remains to be observed.
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